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ABSTRACT. We consider a second order nonlinear ordinary differential equation of the form

u′′+f(u) = p(t) where the forcing term p(t) is a T -periodic function and the nonlinearity f(u) satisfies

properties related to problems of Ambrosetti-Prodi type. We discuss the existence of infinitely many

periodic solutions as well as the presence of complex dynamics under different conditions on p(t) and

by using different kinds of approaches. On the one hand, we exploit the Melnikov’s method and, on

the other hand, the concept of “topological horseshoe”.
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1. INTRODUCTION

This paper is devoted to the study of a classical problem in the theory of nonlinear

differential equations: the Ambrosetti-Prodi problem. Motivated by a note appeared

in 2011 [4] of Antonio Ambrosetti, in honor of Giovanni Prodi, we will focus our

attention to the case of second order ODEs with periodic coefficients. Ambrosetti in

[4] recalled how, starting with the academic year 1970–1971, Giovanni Prodi deliv-

ered in Pisa a series of lectures on Nonlinear Analysis. In particular, the first year

of the course was devoted to the study of local and global inversion theorems and

the geometry of infinite dimensional normed spaces. The work made in that period

by Ambrosetti and Prodi on the inversion of functions with singularities in Banach

spaces led to the publication in 1972 of a seminal paper [7] which can be considered as

a milestone since it has influenced the research in the field of Nonlinear Analysis up

to the present days. The theorems in [7] allowed to face new elliptic boundary value

problems, such as the application in [7] concerning the existence and multiplicity

of solutions for a Dirichlet problem with asymmetric nonlinearities whose derivative

crosses the first eigenvalue. This result received much attention by the mathemati-

cal community and since then problems with these kind of nonlinearities are called

“Ambrosetti-Prodi problems” (briefly written as AP problems). It is interesting to

observe that the theorems in [7] have a very general feature and therefore they could

be applied to different boundary value problems.
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Another meaningful topic pointed out by Ambrosetti in [4] is a list of open ques-

tions regarding global inversion theorems and their applications. With this respect,

this work is inspired by one of these:

“To study the periodic case for an ordinary differential second order equa-

tion −u′′ = g(u) + h(t) where g satisfies

−∞ < lim
u→−∞

g(u)

u
< λ1 < lim

u→+∞

g(u)

u
< λ2

and h is T -periodic (this problem was posed by Prodi himself in his course).”1

It is to notice that several significant results have been already achieved for the

periodic case and they concern the existence, the multiplicity and the stability of pe-

riodic solutions (see [23, 25, 44, 46]). Accordingly, here we shall focus on some aspects

of the AP periodic problem which, in our opinion, have not yet been discussed in de-

tail. Our purpose is to prove that second order ODEs, with periodic coefficients and

nonlinearities satisfying conditions of Ambrosetti-Prodi type, may present solutions

with a very complicated behavior as the phase portrait in Figure 1 suggests.
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Figure 1. Evolution of u′′ +
√

1 + u2 − 1 = 2 + ε sin(ωt) in terms of

the iterates of the Poincaré map, with ε = 0.01, ω = 10 and vary-

ing 500 initial conditions (u(0), u′(0)) where u(0) is within the interval

[−4, 6] and u′(0) = 0. The figure displays the typical alternation of

regions of stability and instability or randomness which are common in

Hamiltonian systems (cf. [43]).

1“Studiare il caso periodico per un’equazione ordinaria del secondo ordine con g verificante (g.1)

ed h periodica (questo problema fu posto dallo stesso Prodi nel suo corso).” Taken from [4, p. 13].
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To begin, we shall take a historical viewpoint and, also, we shall give some pre-

liminary definitions, in order to clarify the issues we are going to study.

The Dirichlet AP problem. The AP problem considered in [4, 7, 8] involves the

following Dirichlet boundary value problem:

(1.1)







−∆u = f(u) + g(x) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded open set sufficiently smooth, g ∈ C0,α(Ω̄) with α a fixed number

in ]0, 1[ and f ∈ C2(R) is a suitable function such that f ′(s), as s goes from −∞ to

+∞, crosses the first eigenvalue associated with the Laplacian operator with zero

Dirichlet boundary condition. In particular, in [7], f is a strictly convex real valued

function such that f(0) = 0 and

(1.2) 0 < f ′(−∞) < λΩ
1 (−∆) < f ′(+∞) < λΩ

2 (−∆),

where, by definition, f ′(−∞) = lims→−∞ f ′(s), f ′(+∞) = lims→+∞ f ′(s) and λΩ
1 (−∆),

λΩ
2 (−∆) are the first two eigenvalues of the eigenvalue problem:







−∆u = λu in Ω,

u = 0 on ∂Ω.

When a function f satisfies conditions of this kind, it is common to say that the

problem (1.1) is of Ambrosetti-Prodi type. Problems of this form are also called

problems with jumping nonlinearities, in order to stress the existence of two different

asymptotes at ±∞ (cf. [27, 28]). The main result in [7] provides the existence of a

C1 manifold M of codimension one which separates C0,α(Ω̄) into two disjoint open

regions A1 and A2 : C0,α(Ω̄) = A1 ∪M∪A2 such that problem (1.1) has no solutions

if g ∈ A1, exactly one solution if g ∈ M, exactly two solutions if g ∈ A2.

After [7], a large amount of articles have been devoted to the number of solutions

of boundary value problems where the derivative of the nonlinearity crosses the first

eigenvalue λΩ
1 (−∆) or higher eigenvalues. To give a complete list of references on this

topic is beyond the scope of this paper and with this respect we refer to the survey

of de Figueiredo [22]. In order to introduce our main results, we just recall here a

few earliest works in this area. In [13], Berger and Podolak split the function g as

−g(x) = µφ1(x) + h(x) where φ1 is the first positive eigenfunction associated with

λΩ
1 (−∆) and

∫

Ω
φ1(x)h(x)dx = 0. Thanks to this decomposition, the manifold M was

characterized by the real parameter µ. Under these assumptions, they proved that

there exists µ̂ such that problem (1.1) has no solutions, exactly one or two solutions

according as µ < µ̂, µ = µ̂ or µ > µ̂. In [33], Kazdan and Warner dealt with the

problem of Berger and Podolak assuming a more general second order differential

operator and weakening the conditions in (1.2) on f . The existence of at least one
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solution if µ > µ̂ and no solutions if µ < µ̂ was proved. The multiplicity result,

characterizing the AP problems, was then obtained in a weaker form, by Dancer [21]

and by Amann and Hess [2], independently. Further investigations were directed to

understand what happens when the nonlinearity crosses more than one eigenvalue and

how higher multiplicity results can be obtained (see, for instance the results of Lazer

and McKenna [37] and Solimini [57]). Questions of resonance and non-resonance

for asymmetric jumping nonlinearities can be also interpreted in the light of the

interactions with the so-called Dancer-Fučik spectrum, starting with the pioneering

works of Dancer [19, 20] and Fučik [28] (see [41] for a detailed presentation of this

topic).

The periodic AP problem. The description of the set of the solutions in the

periodic setting, by means of a real parameter, was achieved in 1986 by Fabry, Mawhin

and Nkashama. In [25] the authors considered the Liénard ODE

(1.3) u′′ + q(u)u′ + f(t, u) = µ,

where µ ∈ R, q and f are continuous functions, f is 2π-periodic in t and

(1.4) lim
|s|→+∞

f(t, s) = +∞ uniformly in t.

Under these conditions, there exists µ̂ ∈ R such that equation (1.3) has no 2π-periodic

solution if µ < µ̂, at least one 2π-periodic solution if µ = µ̂, at least two 2π-periodic

solutions if µ > µ̂ (cf. [25, Cor. 1]).

On the other hand, Ortega in 1989 considered the equation:

(1.5) u′′ + cu′ + f(t, u) = µ,

where c > 0, f is a T -periodic function in t satisfying (1.4) and it is strictly convex

in u:
(

∂f

∂u
(t, u1) −

∂f

∂u
(t, u2)

)

(u1 − u2) > 0, if u1 6= u2, t ∈ R.

Assuming f bounded below and

(1.6)
∂f

∂u
(t,+∞) ≤

(π

T

)2

+
( c

2

)2

, t ∈ R,

the description of the set of the periodic solutions and the study of their stability is

done in [45]. Indeed, there exists µ̂ ∈ R such that, if µ > µ̂, (1.5) has exactly two

T -periodic solutions, one asymptotically stable and another unstable; if µ = µ̂, (1.5)

has exactly one T -periodic which is not asymptotically stable; if µ < µ̂, every solution

of (1.5) is unbounded (cf. [45, Th. 2.1]). In 1990 Ortega also achieved a version of

the result in [7] for the periodic problem associated with

(1.7) u′′ + cu′ + f(u) = p(t),
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where p is a continuous and T -periodic function and the nonlinear term f is of

Ambrosetti-Prodi type. In other words, f ∈ C2(R) satisfies f ′′(s) > 0 for each

s ∈ R and the adapted conditions in (1.2), namely

(1.8) −∞ ≤ f ′(−∞) < 0 < f ′(+∞) ≤
(

2π

T

)2

+
( c

2

)2

.

Under these assumptions, by denoting with CT the set of T -periodic and continuous

functions endowed with the sup norm, it was proved in [46], that there exists a closed

connected C1-manifold M of codimension one in CT such that CT \M consists exactly

of two connected components A1 and A2 such that equation (1.7) has no T -periodic

solution if p ∈ A1, exactly one solution if p ∈ M, exactly two solutions if p ∈ A2

(cf. [46, Th. 0]).

Another contribution to the treatment of AP periodic problems arises from the

work [23] by Del Pino, Manásevich and Murua which generalizes the results in [39]. In

[23] the number of periodic solutions is related to the number of eigenvalues crossed by

the nonlinearity. The study of systems with asymmetric nonlinearities has motivated a

great deal of works which investigate the existence and the multiplicity of periodic and

subharmonic solutions (see [16, 26, 44, 47, 51, 52, 58, 61] and the references therein).

A motivation for these researches, besides the connection with the periodic Dancer-

Fučik spectrum, comes from the topics related to the Lazer-McKenna suspension

bridge models [39].

Basics on chaotic dynamics. The main part of our paper is devoted to a discussion

about the presence of “chaotic-like” solutions for the periodic AP problem. Such a

complex behavior for the solutions will be described in terms of the discrete dynamical

system associated with the Poincaré map of the problem. Since in the literature there

are different notions of chaos, it is important to specify which kind of chaos we refer.

However, it is interesting to observe that, despite the different definitions considered

by several authors, there is a common feature usually associated with the concept of

deterministic chaos which is the possibility to reproduce a coin-tossing sequence by

means of the iterates of a given map.

“The laws of chance, with good reason, have traditionally been expressed

in terms of flipping a coin. Guessing whether heads or tails is the outcome

of a coin toss is the paradigm of pure chance.” (Stephen Smale, [56]).

From this point of view, an abstract scheme often used to describe symbolic dynamics

is given by the shift map (also called Bernoulli shift or shift automorphism) on the

sets of two-sided sequences of m symbols. We recall that, given a collection of m ≥ 2

symbols, namely {0, . . . , m − 1}, we denote by Σm := {0, . . . , m − 1}Z the set of all

two-sided sequences S = (si)i∈Z with si ∈ {0, . . . , m − 1} for each i. The set Σm

is endowed with a standard metric that makes it a compact space with the product
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topology. The shift map σ : Σm → Σm is such that σ(S) = S ′ = (s′i)i∈Z with s′i = si+1

for all i ∈ Z. Note that the shift map on Σm is considered as a model for chaotic

dynamics because it contains all the features which usually characterize the concept of

chaos as a whole, such as transitivity, density of periodic points, positive topological

entropy and so on (see [1, 24, 30, 59]).

A way to show a possible chaotic behavior for a map φ on a metric space is to

prove the existence of a compact invariant set Λ ⊆ X and a continuous and surjective

map Π : Λ → Σm such that Π ◦ φ(w) = σ ◦ Π(w), for all w ∈ Λ. When this situation

occurs, we say that φ is semiconjugate to the shift map on m symbols. If the map Π

is also one-to-one we say that φ is conjugate to the shift map on m symbols. Clearly,

in this latter case, the map φ restricted to Λ inherits all the topological properties of

the shift map.

Close to the shift map, a prototypical example of chaotic dynamics arises by the

geometric structure associated with the Smale horseshoe. From a historical back-

ground, the Smale horseshoe “robustly describes the homoclinic dynamics encoun-

tered by Poincaré and studied by Birkhoff, Cartwright-Littlewood, and Levinson”

(quoting [53]). Technically, the Smale’s construction involves a planar diffeomor-

phism, acting on a square, whose image has the shape of a horseshoe that crosses

the square in a suitable manner (see [43, 54, 55] for the mathematical details). The

Smale horseshoe map presents a hyperbolic compact invariant set on which it is con-

jugate to the shift map on two symbols. In the sequel, any time we have a map

with the same properties (conjugate to (Σm, σ) for m ≥ 2), we will say that a Smale

horseshoe occurs. This is, for instance, the case considered in the frame of Melnikov’s

theory where a Smale horseshoe occurs for some iterates of the Poincaré map as a

consequence of the Smale-Birkhoff theorem. In fact, such theorem considers a diffeo-

morphism φ possessing a transversal homoclinic point q to a hyperbolic saddle point

p. Then, for some N, φ has a hyperbolic invariant set Λ on which the N -th iterate

φN is conjugate to the shift map on two symbols (see [32]).

Sometimes the detection of a Smale horseshoe may be a difficult task, and so,

it grew up the idea of the possibility to prove some weaker types of chaos, which

nonetheless, are still important in the applications. For this reason, various concepts

of chaotic dynamics have been proposed in different contexts (see [15, 17, 35]). Several

authors developed a wide range of different techniques of nonlinear analysis leading

to the so-called “topological horseshoes” [34]. Since in this paper we are interested in

the study of the periodic AP problem, we consider a relevant point the achievement

of the existence of periodic solutions (possibly subharmonic ones) as fixed points of

the Poincaré map or of its iterates. Therefore, we say that a topological horseshoe

occurs if there is a compact invariant set on which a given map φ is semiconjugate to

the shift map on m ≥ 2 symbols and, moreover, for each periodic sequence S ∈ Σm,
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there is at least one periodic point w ∈ Λ for φ with the same period and such that

Π(w) = S. It is important to observe that also in this case the topological entropy is

positive.

Plan of the paper. In view of the previous survey about the AP periodic problems,

our aim is to focus the attention on a simple second order nonlinear ODE in which

the nonlinearity fulfills the principal features about the derivative’s crossing with the

first eigenvalue. Namely, we consider

(1.9) u′′ + f(u) = p(t),

where p(t) is a T -periodic forcing term and the nonlinearity f(u) is a positive function,

with global minimum at u = 0, which is decreasing on the negative reals and increasing

on the positive ones. The counterpart of (1.9) with a damping term

u′′ + cu′ + f(u) = p(t),

will be studied as well. Since a dynamical system approach will be adopted, we briefly

present in Section 2 some results about the autonomous equation u′′ + f(u) = k

where k ∈ R. In particular, for k > 0 the associated planar phase-portrait is that

of a local center enclosed by a homoclinic trajectory of a hyperbolic saddle point.

When (1.9) may be treated as a small perturbation of the associated autonomous

system, such saddle-center geometry suggests to exploit a Melnikov type approach.

On the contrary, when the perturbation is not necessarily small, we discuss two other

different methods. A first one comes from the Conley index theory and it is borrowed

from [29, 36]. A second one is based on a topological argument called “Stretching

Along the Paths” (SAP). In Section 3 we discuss the detection of chaos, under different

assumptions on the nonlinearity f and the forcing term p that will suggest in a natural

way the choice of the abstract method that we are going to apply. Furthermore, these

different methods and their corresponding results have been divided mainly into two

types according to their capability to ensure the presence of “Smale horseshoes” or

of “topological horseshoes”. Finally, in Appendix we provide the basic theory of the

SAP method for completeness.

2. DESCRIPTION OF THE PERIODIC PROBLEM

As observed in the Introduction, in order to develop a more complete understand-

ing of the Ambrosetti-Prodi problem with periodic boundary conditions, the typical

nonlinearities that one has to consider consist of sufficiently smooth strictly convex

functions f : R → R such that

(2.1) f ′(−∞) < 0 < f ′(+∞).
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This clearly is consistent with the requirement that the derivative of the nonlinearity

crosses the first eigenvalue, which is λ1 = 0 in the case of the linear periodic eigenvalue

problem associated with the differential operator u 7→ −u′′ − cu′ (where c ∈ R). Any

strictly convex function satisfying (2.1) is such that f(±∞) = +∞ and it has a unique

point of strict absolute minimum s = sm. Without loss of generality (i.e. possibly

replacing f(s) with f(s + sm) − f(sm)), we can suppose to work with a nonlinear

function f having a strict absolute minimum at s = 0 and such that f(0) = 0.

Taking into account these preliminary observations, we are in position to intro-

duce a list of the main assumptions characterizing the class of nonlinearities that we

will consider. These conditions, summarized below in (H0), will be tacitly assumed

throughout this paper and they represent the minimum equipment of requirements

which are common in all the different approaches we are going to discuss. Further

regularity conditions will also be introduced in the sequel when needed.

(H0) f : R → R is a locally Lipschitz continuous function with f(0) = 0 which is

strictly decreasing on ] −∞, 0] and strictly increasing on [0,+∞[ and such that

lim|s|→+∞ f(s) = +∞.

We deal with the second order nonlinear equation

(E1) u′′ + f(u) = p(t),

where the forcing term p : R → R is supposed to be a locally integrable T -periodic

function. In some cases it will be possible to extend the results for equation (E1) to

the equation

(E2) u′′ + cu′ + f(u) = p(t),

where c is a positive friction coefficient. If c is assumed to be small, equation (E2) can

be viewed as a perturbation of the conservative equation (E1). For the investigation

of both (E1) and (E2) we follow a dynamical system approach by analyzing the local

flow associated with the corresponding systems in the phase plane. In particular,

dealing with (E1), we consider the planar Hamiltonian system

(S1)







x′ = y,

y′ = −f(x) + p(t).

As usual, by the local flow determined by (S1) we mean the map Ψt
t0

which associates

to any initial point z0 = (x0, y0) ∈ R
2 the point ζ(t), where ζ(·) is the solution of

(S1) satisfying the initial condition ζ(0) = z0 and defined on its maximal interval

of existence. In the sequel, when not otherwise specified, we will take t0 = 0 and

we consider the Poincaré operator Ψ := ΨT
0 . The fundamental theory of ODEs

guarantees that Ψ is a homeomorphism defined on an open set domΨ ⊆ R
2. Similar
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considerations can be done for system

(S2)







x′ = y,

y′ = −cy − f(x) + p(t),

which is equivalent to (E2).

The study of system (S1) should become easier after a preliminary qualitative

analysis of the autonomous system with a constant forcing term. Roughly speaking,

this corresponds to the case in which the time variable is “freezed” and it will be the

object of the next subsection.

2.1. Phase plane analysis. Let us introduce a model problem by means of the

autonomous ODE

(2.2) u′′ + f(u) = k,

with k a real parameter. The phase plane analysis and geometric considerations give

us information about the qualitative behavior of the solutions of (2.2) and in turn of

(E1).

With this respect, equation (2.2) can be written equivalently as a planar system

in the phase plane (x, y):

(2.3)







x′ = y,

y′ = −f(x) + k.

First of all let us find the equilibria of (2.3), by solving the equation f(x) = k.

In view of minR f = f(0) = 0, we consider from now on only the case k ≥ 0.

If k = 0, the origin is an unstable equilibrium of the system. In particular, it is

the coalescence of a saddle point with a center. It seems interesting to observe that

in literature such a geometry appears in the so called Bogdanov-Takens bifurcation

(see [30]). On the other hand, if k > 0, the properties of the function f lead to the

existence of exactly two equilibria. Under the assumption (H0) made on f , we can

define two homeomorphisms

fl := f |]−∞,0] :] −∞, 0] → [0,+∞[,

fr := f |[0,+∞[ : [0,+∞[→ [0,+∞[,

such that fl is strictly decreasing and fr is strictly increasing. Therefore, the inverse

functions of both fl and fr are well defined and we denote them by f−1
l and f−1

r ,

respectively. By setting

xu = xu(k) := f−1
l (k),

xs = xs(k) := f−1
r (k),
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we have xu < xs. The equilibria are the points (xu, 0) and (xs, 0) where the first one

has got the topological structure of an unstable saddle and the second one is a stable

center.

The system (2.3) is a hamiltonian system with total energy given by

(2.4) Ek(x, y) :=
1

2
y2 + F (x) − kx,

where F is defined by

F (x) :=

∫ x

0

f(s)ds.

Notice that F (±∞) = ±∞.

To describe the associated phase portrait, for each ρ ∈ R, we define the energy

level lines of (2.3) as follows

Lρ := {(x, y) ∈ R
2 : Ek(x, y) = ρ}.

In order to study the geometry of each Lρ it is useful to introduce the auxiliary

function

(2.5) Φk(x) := F (x) − kx.

Observe that, for each k > 0, the graph of the function Φk is that of a N -shaped

curve passing through the origin with negative slope.

Proposition 2.1. Let Φk be defined as in (2.5) for k = 0. Then, Φ0(x) = ρ has a

unique solution for every ρ ∈ R. In particular, the following hold.

• If ρ = 0 the solution is x = 0.

• If ρ < 0 we denote it by x∗(ρ) and it is such that x∗(ρ) < 0.

• If ρ > 0 we denote it by x∗(ρ) and it is such that x∗(ρ) > 0.

Proof. From the conditions in (H0) made on f follows that Φ0 is strictly increasing

on R and also Φ0(0) = 0. Hence, thanks to the monotonicity of Φ0, the conclusions

follow straightaway.

Proposition 2.2. Let k be a fixed positive real number and Φk defined as in (2.5).

Then, the following hold.

• If ρ = Φk(xu), then Φk(x) = ρ has two solutions. One is xu and the other one,

denoted by xh = xh(k), is such that xs < xh.

• If ρ = Φk(xs), then Φk(x) = ρ has two solutions. One is xs and the other one,

denoted by x∗(ρ), is such that x∗(ρ) < xs.

• If ρ > Φk(xu), then Φk(x) = ρ has a unique solution, denoted by x∗(ρ), and it is

such that x∗(ρ) > xh.
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• If Φk(xs) < ρ < Φk(xu), then Φk(x) = ρ has three solutions. These solutions,

denoted by x∗(ρ), x−(ρ) and x+(ρ), are such that x∗(ρ) < xu < x−(ρ) < xs <

x+(ρ).

• If ρ < Φk(xs), then Φk(x) = ρ has a unique solution, denoted by x∗(ρ), and it is

such that x∗(ρ) < xu.

Proof. Assumption (H0) leads to Φk(0) = 0. By definition of Φk, its derivative is

Φ′
k(x) = f(x)−k. Thus, limx→±∞ Φ′

k(x) = +∞ because of condition lim|x|→∞ f(x) =

+∞. In this way, we have Φk(±∞) = ±∞. Moreover, Φk has exactly two critical

points which are the abscissa of the equilibria of system (2.3). From the properties

(H0) assumed on f , we deduce that xu is a local maximum and xs is a local minimum.

Therefore, it follows that Φk is strictly decreasing on [xu, xs] and strictly increasing

on ] −∞, xu] and [xs,+∞[. Since 0 ∈]xu, xs[, we have Φk(xu) > 0 > Φk(xs).

So that, if ρ = Φk(xu), then there exists unique xh ∈]xs,+∞[ such that Φk(xh) =

Φk(xu). Analogously, if ρ = Φk(xs) then there exists unique x∗(ρ) ∈] −∞, xu[ such

that Φk(x∗(ρ)) = Φk(xs). Instead, for every ρ ∈]Φk(xs),Φk(xu)[, there exist x∗(ρ) ∈]−
∞, xu[, x−(ρ) ∈]xu, xs[ and x+(ρ) ∈]xs, xh[ which are zeros of the equation Φk(x) = ρ.

At last, if ρ ∈]Φk(xu),+∞[, or ρ ∈]−∞,Φk(xs)[, the equation Φk(x) = ρ has exactly

one solution x∗(ρ) ∈]xh,+∞[, respectively x∗(ρ) ∈] −∞, xu[.

An application of Proposition 2.1 along with Proposition 2.2 reveals the geometry

of the phase portrait associated with system (2.3) for any given k ≥ 0. Examples

of phase portraits which mimic the behavior of the solutions of (2.2) are shown in

Figure 2.
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UρVρ W
u(xu)

W
s(xu)

x

y

x∗(ρ) x−(ρ) x+(ρ) xhx
+(ρ)

(xu, 0) (xs, 0)

Oρ
UρVρ W

s(xu)

W
u(xu)

H(xu)

x

y

Figure 2. Phase portraits of the autonomous system (2.3) where the

nonlinearity is given by f(u) =
√

1 + u2−1. Right: k = 0. Left: k > 0.

In both cases the geometry of the different energy level lines is pointed

out and the arrows show the direction of the flow along the trajectories.

Moreover, for all ρ ∈ R, we can characterize the energy level lines Lρ according to

their type with respect to the level ρ. Since, the different kinds of energy level lines
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for case k > 0 include the ones for k = 0, here we give just a detailed discussion about

positive reals k.

For ρ = Φk(xu), the saddle like structure is characterized by the union of the

unstable equilibrium point with the unstable manifold W u(xu), the stable manifold

W s(xu) and the homoclinic orbit H(xu). In this way, we have

LΦk(xu) = {(xu, 0)} ∪W u(xu) ∪W s(xu) ∪H(xu),

where

W u(xu) := {(x, y) ∈ R
2 : x < xu, y < 0, Ek(x, y) = Φk(xu)},

W s(xu) := {(x, y) ∈ R
2 : x < xu, y > 0, Ek(x, y) = Φk(xu)},

H(xu) := {(x, y) ∈ R
2 : x > xu, Ek(x, y) = Φk(xu)}.

For Φk(xs) < ρ < Φk(xu), the energy level line splits as follows

Lρ∈]Φk(xs),Φk(xu)[ = Oρ ∪ Vρ,

where

(2.6) Oρ := {(x, y) ∈ R
2 : x > xu, Ek(x, y) = ρ}

is a closed symmetric curve surrounding the center which intersects the x-axis at the

points (x−(ρ), 0) and (x+(ρ), 0) and it is run in the clockwise sense, on the contrary,

(2.7) Vρ := {(x, y) ∈ R
2 : x < xu, Ek(x, y) = ρ}

is an unbounded symmetric curve which intersects the x-axis at the point (x∗(ρ), 0).

If ρ = Φk(xs), then

LΦk(xs) = {(xs, 0)} ∪ VΦk(xs),

with {(xs, 0)} the stable equilibrium point and VΦk(xs) defined according to (2.7).

For every ρ < Φk(xs), Lρ is a curve identified by (2.7) and so, also in this case,

we denote each energy level line with Vρ.

For every ρ > Φk(xu), Lρ is an unbounded symmetric curve over the saddle

like structure which intersects the x-axis at the point (x∗(ρ), 0) and it is run in the

clockwise sense. In this case, the energy level line is

(2.8) Uρ := Lρ∈]Φk(xu),+∞[ = {(x, y) ∈ R
2 : Ek(x, y) = ρ}.

We conclude the phase plane analysis performing a study, depending on k, of the

intersection points between the saddle like structure with the x-axis.

Proposition 2.3. Let k1, k2 ∈ R such that 0 ≤ k1 < k2 and Φk1
,Φk2

defined as in

(2.5), then there exist unique xh(ki) for i ∈ {1, 2} such that Φki
(xu(ki)) = Φki

(xh(ki))

and xu(k2) < xu(k1) < xh(k1) < xh(k2).
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Proof. From the growth conditions of f in (H0) it follows that

xu(k2) < xu(k1) < xs(k1) < xs(k2).

By the definition of Φk, we deduce that

Φk1
(x) < Φk2

(x), ∀x < 0,(2.9)

Φk1
(x) > Φk2

(x), ∀x > 0.(2.10)

Since xu(k2) < xu(k1) < 0, the condition in (2.9) and the fact that Φk2
is strictly

decreasing on ]xu(k2), 0], imply

(2.11) Φk1
(xu(k1)) < Φk2

(xu(k1)) < Φk2
(xu(k2)).

Thanks to Proposition 2.2 there exist exactly two positive real numbers xh(k1), xh(k2)

such that xs(k1) < xh(k1), xs(k2) < xh(k2) and

Φki
(xu(ki)) = Φki

(xh(ki)), for i = 1, 2.

Using these equalities in (2.11) we can get

(2.12) Φk1
(xh(k1)) < Φk2

(xh(k2)).

Whereas xh(k2) > 0, then from the condition in (2.10) follows

(2.13) Φk2
(xh(k1)) < Φk1

(xh(k1)).

Combining (2.12) and (2.13), we obtain Φk1
(xh(k1)) < Φk1

(xh(k2)). Since Φk1
is

strictly increasing on [xs(k1),+∞[, we conclude that

xh(k1) < xh(k2),

because of xs(k1) < xh(k2).

2.2. Time mapping formulas. Let us introduce some notation that will be used

throughout the paper. Considering (2.4) and (2.5), the time needed to a solution to

move in the phase plane (x, y) along an orbit path identified by the energy level ρ,

from a point (x1, y1) to a point (x2, y2), is given by

(2.14) τ(ρ; x1, x2) :=

∫ x2

x1

1
√

2(ρ− Φk(s))
ds.

The function ρ 7→ τ(ρ; x1, x2) is called time-map associated with the autonomous

equation (2.2).

The phase plane analysis has highlighted the presence of a saddle like structure

and also mainly two types of orbits. More in detail, there are the periodic orbits, Oρ,

and the non-periodic ones, Vρ and Uρ. With this in mind, we can characterize the

time-map formulas in three different kinds.

In the case of the periodic orbits, by (2.14) we can evaluate the time elapsed to

move along the orbit Oρ which is defined as in (2.6). In particular, we set the time
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needed to travel from (x−(ρ), 0) to a point (r, 0) on Oρ, with x−(ρ) < r ≤ x+(ρ), as

follows

(2.15) τO(ρ; r) := τ(ρ; x−(ρ), r) =

∫ r

x−(ρ)

1
√

2(ρ− Φk(s))
ds.

In this way, since Oρ is a closed symmetric curve, its fundamental period is given by

2 τO(ρ; x+(ρ)).

With respect to non-periodic orbits, firstly we consider the unbounded curve Vρ

defined as in (2.7). To evaluate the travel time on Vρ, let us fix a value r with

r < x∗(ρ) < xu. Then, we define two points that belong to Vρ: one is P+
ρ (r) :=

(

r,
√

2(ρ− Φk(r))
)

, in the upper half plane, and the other symmetric one is P−
ρ (r) :=

(

r,−
√

2(ρ− Φk(r))
)

, in the lower half plane. Therefore, the time needed to move

along Vρ from P+
ρ (r) to (x∗(ρ), 0) is

τ(ρ; r, x∗(ρ)) =

∫ x∗(ρ)

r

1
√

2(ρ− Φk(s))
ds,

which is equal to the time needed to travel from (x∗(ρ), 0) to P−
ρ (r). It follows that

the time elapsed to go from P+
ρ (r) to P−

ρ (r) on Vρ is

(2.16) τV(ρ; r) := 2

∫ x∗(ρ)

r

1
√

2(ρ− Φk(s))
ds.

In a similar way, we face the time-map associated with the orbit Uρ defined as in

(2.8). In this case, we fix a value r < x∗(ρ) and so, as before, the time needed to go

from P+
ρ (r) to P−

ρ (r) along Uρ is given by

(2.17) τU(ρ; r) := 2

∫ x∗(ρ)

r

1
√

2(ρ− Φk(s))
ds.

3. CHAOTIC SOLUTIONS FOR THE AP PERIODIC PROBLEM

After these preliminary considerations on the associated planar system with con-

stant coefficients, we proceed to present some possible approaches showing how the

periodic AP problem may have a great amount of periodic solutions as well as chaotic

dynamics. In this section, we firstly give direct applications of some results already

available in the literature and then we provide a new result that involves a method

derived from the theory of topological horseshoes.

3.1. Melnikov type approach. We collect here some different tools that are all

based on a peculiar structure of autonomous Hamiltonian system, namely the ex-

istence of a hyperbolic fixed point connected to itself by a homoclinic orbit. This

feature is owned by system (2.3) for k > 0 provided that f is sufficiently smooth with

f ′(xu) < 0. In order to have such a condition satisfied for every possible choice of
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k > 0, we assume, along this subsection, a more restrictive condition than (H0) that

is the following one.

(H1) f : R → R is a strictly convex function of class Cr, for r ≥ 2, with f(0) = 0,

f(s) > 0 for all s 6= 0 and lim|s|→+∞ f(s) = +∞.

The phase plane analysis shows the presence of an equilibrium point A = Ak :=

(xs, 0), which is a center, and a hyperbolic saddle equilibrium point B = Bk := (xu, 0)

with a homoclinic orbit H = H(xu) enclosing the point A. As mentioned above, this

is the classical scheme considered in the Melnikov’s theory, where system (S1) can

be viewed as a perturbation of the autonomous system (2.3). The Melnikov’s method

is a powerful tool and “one of the few analytical methods available for the detection

and the study of chaotic motions” (quoting [30, p. 186]). In the special case of (S1)

it can be applied by splitting the forcing term p(t) as

(3.1) p(t) = k + εp0(t), k > 0.

Without loss of generality, we can also suppose that p0(t) changes its sign. In partic-

ular, by transferring the mean value of p0 to the constant k, we can assume

(3.2)

∫ T

0

p0(t) dt = 0.

Let q(t) = qk(t) be the solution of equation (2.2) such that q(0) = xh and q′(0) = 0.

Recall that xh (depending on the coefficient k) is the solution of Φk(x) = Φk(xu) with

x > xs or, equivalently, the point (xh, 0) is the intersection of the homoclinic trajectory

H with the x-axis. The curve t 7→ (q(t), q′(t)) is a particular parametrization of H
and it is unique up to a shift in the time variable. Our choice, which is the standard

one in similar situations, is convenient because q(t) is an even function. Moreover, by

standard results on hyperbolic saddle points, note that |q(t) − xu| + |q′(t)| → 0 with

exponential decay as t → ±∞ (cf. [31, Ch. III.6]). Thus, in particular, the improper

integrals
∫ +∞
0

(q(t) − xu) dt and
∫ +∞
0

|q′(t)| dt are convergent.

Now, the Melnikov function associated with system (S1) for p(t) as in (3.1), is

given by

(3.3) ∆(α) :=

∫ +∞

−∞
q′(t)p0(t+ α) dt.

Notice that, by the T -periodicity of p0(t), it turns out that also ∆(α) is a T -periodic

function. Moreover, from (3.2) we have
∫ T

0
∆(α)dα = 0, so that either ∆ ≡ 0 or ∆(α)

changes its sign.

An application of the Melnikov method to system

(3.4)







x′ = y,

y′ = −f(x) + k + εp0(t),
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gives the following result (cf. [30, Th. 4.5.3] or [59, Th. 28.1.7]).

Theorem 3.1. Assume (H1) and let (q(t), q′(t)) be the homoclinic solution at the

saddle point B = Bk for the autonomous system (2.3) for some k > 0. Let also p0

be a sufficiently smooth, Cr for r ≥ 2, T -periodic function satisfying (3.2). If there

exists α ∈ [0, T [ such that ∆(α) = 0 and ∆′(α) 6= 0, then there is ε0 > 0 such that for

each ε with 0 < |ε| < ε0 a Smale horseshoe occurs for some iterate of the Poincaré

map associated with system (3.4).

The result expressed in Theorem 3.1 is robust for small and smooth perturbations.

More in detail, the presence of a Smale horseshoe is guaranteed also for system






x′ = y,

y′ = −cy − f(x) + k + εp0(t),

provided that c is sufficiently small, depending on ε. Hence the result applies to

equation

u′′ + cu′ + f(u) = k + εp0(t)

as well. More precisely, if we write the coefficient c as

c := εc0,

the Melnikov function takes the form

(3.5) ∆(α) :=

∫ +∞

−∞

(

q′(t)p0(t+ α) − c0q
′(t)2

)

dt

and Theorem 3.1 applies to system






x′ = y,

y′ = −εc0y − f(x) + k + εp0(t).

Usually the test of the existence of a simple zero for the Melnikov function is a

hard task, especially if an explicit analytical expression for q(t) is not given. The first

important and pioneering applications of this method to some second order nonlinear

ODEs, such as the pendulum or the Duffing equation, have taken advantage of the

fact that the expression of q(t) was known (see [30, p. 191]).

On the contrary, when an explicit expression of q(t) is not given, some results can

be still produced by exploiting further qualitative information about the homoclinic

orbit or even about the forcing term, if they are available. From this point of view, we

refer to the work of Battelli and Fečkan [11], since they have evaluated the Melnikov

function when q(t) is a rational function of exp(t). A general result, which does not

require any specific assumption on q(t) by involving only a simply verifiable condition

on p0(t), was obtained by Battelli and Palmer in [12]. This result applies to system
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(3.4) provided that the period of the forcing term is sufficiently large. For this reason,

instead of (3.4), it is convenient to consider the system

(3.6)







x′ = y,

y′ = −f(x) + k + ε2p0(εt).

In this setting, we can state what follows (cf. [12, p. 293, Theorem]).

Theorem 3.2. Assume (H1) with f ∈ Cr+3, for r ≥ 5, and let (q(t), q′(t)) be the

homoclinic solution at the saddle point B = Bk for the autonomous system (2.3) for

some k > 0. Let also p0 be a sufficiently smooth, Cr+3 for r ≥ 5, T -periodic function

satisfying (3.2). If there exists α ∈ [0, T [ such that

p′0(α) = 0 6= p′′0(α),

then there is ε0 > 0 such that for each ε with 0 < |ε| < ε0 a Smale horseshoe occurs

for some iterate of the Poincaré map associated with system (3.6).

We conclude this section by giving an example of application of these results

to the AP periodic problem. In order to do this, given ω > 0, we suppose that

p0(t) := sin(ωt) is the periodic forcing term of period T := 2π/ω. Using the properties

of p0(t) we can show the following consequence.

Corollary 3.3. Assume (H1) and let (q(t), q′(t)) be the homoclinic solution at the

saddle point B = Bk for the autonomous system (2.3) for some k > 0. Then, for any

ω > 0 there exists ε0 = ε0(ω) > 0 such that for each ε with 0 < |ε| < ε0 a Smale

horseshoe occurs for some iterate of the Poincaré map associated with system

(3.7)







x′ = y,

y′ = −f(x) + k + ε sin(ωt).

The same result also holds for the damped system

(3.8)







x′ = y,

y′ = −εc0y − f(x) + k + ε sin(ωt),

for c0 sufficiently small.

Proof. For simplicity, we investigate only the frictionless case because with a similar

argument one can also derive the result when a small friction term c0 is present.

Recalling that q′(t) is an odd function, from (3.3) we obtain

∆(α) =

∫ +∞

−∞
q′(t) sin(ωt+ ωα) dt = −2ω cos(ωα)η(ω),

for

η(ω) :=

∫ +∞

0

q̃(t) cos(ωt)dt, with q̃(t) := q(t) − xu.
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In this manner, we have reduced the search of a simple zero for ∆(α) to the verification

that η(ω) 6= 0.

Since η′(ω) = −ω
∫ +∞
0

q̃(t) sin(ωt)dt = −
∫ +∞
0

q̃(ξ/ω) sin(ξ)dξ, we find that

−η′(ω) =
∞

∑

j=0

(−1)j

∫ (j+1)π

jπ

q̃

(

ξ

ω

)

| sin(ξ)| dξ =
∞

∑

j=0

(−1)jΞj

where we have set

Ξj :=

∫ π

0

q̃

(

t+ jπ

ω

)

sin(t) dt.

By observing that q̃(t) is positive and decreasing on [0,+∞[, follows that the sequence

(Ξj)j is positive, decreasing and Ξj → 0 as j → +∞. The theory of alternating

series guarantees that
∑

(−1)jΞj > 0 and hence η′(ω) < 0 for each ω > 0. Since

η(ω) →
∫ +∞
0

q̃(t)dt > 0 as ω → 0+, we conclude that either η(ω) > 0 for each ω > 0

or η(ω) vanishes exactly once. On the other hand, by the Riemann-Lebesgue lemma,

it follows that η(ω) → 0 as ω → +∞. This implies that the second alternative never

occurs because η is strictly decreasing. Hence, in view of Theorem 3.1 the proof is

completed.

Remark 3.4. It is interesting to observe that Corollary 3.3 is applicable to nonlin-

earities that satisfy the assumptions, interpreted in the context of periodic problems,

which were made by Ambrosetti and Prodi. In fact, according to [7, p. 239], let us

consider a function f : R → R of class C2 satisfying: f(0) = 0, f ′′(s) > 0 for all s ∈ R

and

ℓ′ := lim
s→−∞

f ′(s) < λ1 < ℓ′′ := lim
s→+∞

f ′(s) < λ2 .

We recall that in the context of a periodic problem the first two eigenvalues associated

with the differential operator u 7→ −u′′ subject to T -periodic boundary conditions are

λ1 := 0 and λ2 := ω2 where ω := (2π/T ).

An application of the Ambrosetti-Prodi abstract theory [7] to this situation, yields

to the following result: there exists k0 = k0(ε) such that, the T -periodic problem

associated with equation (3.7), has no solutions, exactly one or two solutions according

as k < k0, k = k0 or k > k0. In [45, 46], Ortega has proved that this result is still

valid for the equation u′′ + cu′ +f(u) = k+p(t), for c > 0, and information about the

stability of the solutions are given. In particular, if we apply such results to system

(3.8) we know that if ℓ′′ ≤ ω2/4, then, for k > k0, one T -periodic solution is unstable,

while the other one is asymptotically stable (cf. [45, Th. 2.1]).

Since Corollary 3.3 can be applied without any restriction on ω, we have that

chaos coexists in the same range of parameters where both the theorem of Ambrosetti-

Prodi and the ones of Ortega are valid. Rather surprisingly (at first glance) however

there is no real conflict between these results. Indeed, Melnikov’s method ensures the

existence of a Smale horseshoe for a suitable iterate, ΨN , of the associated Poincaré
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map; in particular, this fact also implies the existence of large order subharmonics.

On the other hand, the results in [45, 46] prevent the existence of subharmonics of

order two. The existence of a great amount of subharmonic solutions for the AP

periodic problem has already been obtained in [16, 51, 52] for the Hamiltonian case,

i.e. system (S1), using the Poincaré-Birkhoff twist theorem (see also [23, 38, 39] for

some previous relevant contributions in this direction). In any case, the coexistence

of stability regions and chaos zones is a well-known fact in the theory of Hamiltonian

systems (see [43, Ch. III]).

The advantage of Corollary 3.3 is that no condition on ω, and thus on the period

T , is required. Nevertheless, this result applies to a limited class of forcing terms.

To achieve an analogous goal for a broad family of periodic functions p0, we should

look at Theorem 3.2. In this case, however, we have to take into account the fact

that the period of the forcing term is modified by the parameter ε > 0. In fact, if

p0 is T -periodic, then the forcing term in (3.6) has period Tε := T/ε. Observe that

in this case, the second eigenvalue of the corresponding periodic problem becomes

λ2 := (2π/T )2ε2. Hence, for a sufficiently small ε > 0, we will have f ′(+∞) > λ2.

This means that the nonlinearity jumps certainly the second eigenvalue (and maybe

it crosses many others more), therefore we enter in a range of parameters for which

several Tε-periodic solutions exist. Indeed, we know that at least the Hamiltonian

system (S1) has plenty of periodic solution (see [38, 39, 51, 58, 61]). Hence, it is

reasonable to expect to find also chaotic-like solutions for forcing terms which are not

necessarily small. This will be discussed in the sequel.

To conclude this section, based on the applications of the Melnikov’s method, we

remark that results ensuring the chaotic behavior of the Poincaré map, and not just its

suitable iterate, can be found in the context of singular perturbation systems in [18].

These results, if applied to our case, lead to the introduction of further conditions on

the nonlinearity or the period.

3.2. Topological horseshoes. We have already seen that check the hypothesis on

the simplicity of the zero for the Melnikov function may be very laborious when an ex-

plicit analytical expression of the homoclinic solution is not available. Consequently,

we discuss two different approaches connected with the Melnikov’s theory and an-

other one which is called stretching along the paths method (or briefly SAP method).

Here weaker requirements are made in order to achieve the presence of a topological

horseshoe, instead of a Smale horseshoe.

3.2.1. Slowly varying systems. In [10], Battelli and Fečkan have generalized the hy-

pothesis about the existence of a simple zero for the Melnikov function using topologi-

cal degree and by simply assuming that ∆(α) changes its sign. This weaker condition,
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clearly enlarges the range of applicability of the theorem and the corresponding result

reads as follows (cf. [10, Theorem 4.4 and Remark 5.4]).

Theorem 3.5. Assume (H1) and let (q(t), q′(t)) be the homoclinic solution at the

saddle point B = Bk for the autonomous system (2.3) for some k > 0. Let also p0 be

a sufficiently smooth, Cr for r ≥ 2, T -periodic function satisfying (3.2). If

∆ 6≡ 0,

then there is ε0 > 0 such that for each ε with 0 < |ε| < ε0 a topological horseshoe

occurs for some iterate of the Poincaré map associated with (3.4).

To show an application of Theorem 3.5, we consider the system

(3.9)







x′ = y,

y′ = −f(x) + k + εp0(Ωt),

where p0 : R → R is a T -periodic function of class C2 and Ω > 0 is a fixed constant.

Clearly, this is an example of system (S1) with a periodic forcing term p(t) = k +

εp0(Ωt) of period TΩ := T/Ω. In this context, we prove what follows.

Corollary 3.6. Assume (H1) and let (q(t), q′(t)) be the homoclinic solution at the

saddle point B = Bk for the autonomous system (2.3) for some k > 0. Suppose that

p0 is not constant. Then, there exists Ω0 > 0 such that for every Ω with 0 < Ω < Ω0,

there is ε0 = ε0(Ω) > 0 such that for each ε with 0 < |ε| < ε0 a topological horseshoe

occurs for some iterate of the Poincaré map associated with system (3.9). The same

result also holds for the damped system

(3.10)







x′ = y,

y′ = −εc0y − f(x) + k + εp0(Ωt),

for c0 sufficiently small.

Proof. We prove the statement for equation (3.9), since the corresponding conclusion

for (3.10) holds as a consequence of the fact that the result in Theorem 3.5 is stable

for small perturbations, being based on topological degree theory. Moreover, note

that the same analysis we are going to present can be repeated, in the latter case, for

the Melnikov function in (3.5).

Therefore, let us consider (3.9). After an integration by parts, the Melnikov

function defined in (3.3) takes the form

∆(α) = −Ω

∫ +∞

−∞
q̃(t)p′0(Ωt+ Ωα) dt,
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where q̃(t) = q(t)− xu. Since p0 is not constant, there exists s∗ such that p′0(s
∗) > 0.

Then, there exist a constant δ∗ > 0 and an interval [s∗−r∗, s∗+r∗] such that p′(ξ) ≥ δ∗

for all ξ ∈ [s∗ − r∗, s∗ + r∗]. Taking α∗ = α∗(Ω) := s∗/Ω, we have that

−∆(α∗)

Ω
≥

∫ r∗/Ω

−r∗/Ω

q̃(t)p′0(s
∗ + Ωt) dt− 2‖p′0‖∞

∫ +∞

r∗/Ω

q̃(t) dt

≥ 2δ∗
∫ r∗/Ω

0

q̃(t) dt− 2‖p′0‖∞
∫ +∞

r∗/Ω

q̃(t) dt.

Since, one can deduce the existence of a constant Ω1 > 0 such that for each Ω with

0 < Ω < Ω1 it holds that
∫ r∗/Ω

0
q̃(t) dt > (δ∗)−1‖p′0‖∞

∫ +∞
r∗/Ω

q̃(t) dt, then we have

∆(α∗) < 0.

Similarly, there exists s∗ such that p′0(s∗) < 0. Accordingly, there are a constant

δ∗ > 0 and an interval [s∗−r∗, s∗+r∗] such that p′(ξ) ≤ −δ∗ for all ξ ∈ [s∗−r∗, s∗+r∗].
Taking now α∗ = α∗(Ω) := s∗/Ω, by an argument similar to the previous one, there

exists a constant Ω2 > 0 such that for each Ω with 0 < Ω < Ω2 we have ∆(α∗) > 0.

The conclusion now follows from Theorem 3.5 by taking Ω0 := min{Ω1,Ω2}.

We stress the fact that Corollary 3.6 applies to an arbitrary nonconstant periodic

function of class C2 provided that its period TΩ is very large and its displacement

from a constant value k > 0 is very small.

As a next step, we plan to examine the case in which some form of chaotic

behavior can occur in situations when the forcing term has a sufficiently large period.

On the other hand, we will not assume any restriction regarding the smallness of

the displacement. To this purpose, we consider a different topological approach that

comes from the Conley index theory and has been considered by Gedeon, Kokubu,

Mischaikow and Oka in [29] to prove the presence of chaotic solutions in slowly varying

Hamiltonian systems. The method in [29] is stable for small perturbations and applies

also to systems which are not necessarily periodic in the time variable. Here, we give

an application to system

(3.11)







x′ = y,

y′ = −f(x) + p(εt),

where p : R → R is a non-constant periodic function of class C2 such that p(t) > 0

for all t ∈ R. First we need to introduce a few definitions from [29]. Writing (3.11)

as

(3.12)



















x′ = y,

y′ = −f(x) + p(θ),

θ′ = ε,
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we set, for a moment, θ as a constant parameter and consider the planar autonomous

Hamiltonian system

(3.13)







x′ = y,

y′ = −f(x) + p(θ).

Concerning this latter system, for each θ there exist an equilibrium point A(θ) :=

(xs(θ), 0), which is a center, and also a hyperbolic saddle equilibrium point B(θ) :=

(xu(θ), 0) with a homoclinic orbit enclosing A(θ). By definition, f(xu(θ)) = f(xs(θ)) =

0, with xu(θ) < 0 < xs(θ). We denote also with A the set of all the points (A(θ), θ)

which is a curve of R
3. A solution X(t) := (x(t), y(t), θ(t)) of system (3.12) is said to

oscillate k times over an interval I = [θ−, θ+] with respect to A , if k ∈ N identifies

the homotopy class of the closed loop




⋃

θ(t)∈I

X(t) ∪B(θ(t))



 ∪





⋃

θ(t)∈∂I

X(t)B(θ(t))





in the fundamental group of R
3 \ A (isomorphic to Z). Then, the results in [29, 36],

applied to system (3.11), give the following conclusion.

Theorem 3.7. Assume (H1) and let also p : R → R be a non-constant periodic

function of class C2 such that p(t) > 0 for all t ∈ R. Then, there exists a choice of

infinitely may pairwise disjoint closed intervals Ii := [θ−i , θ
+
i ] with

. . . θ−i−1 < θ+
i−1 < θ−i < θ+

i < θ−i+1 < θ+
i+1 . . . , i ∈ Z,

with the following property: for any given positive integer K there exists ε̄ > 0 such

that for any ε with 0 < ε < ε̄, there are at least two non-negative integers m′
i and m′′

i

(for i odd) and at least K non-negative integers m1
i , . . .m

K
i (for i even), such that for

each sequence (si)i∈Z of integers with s2i+1 ∈ {m′
2i+1, m

′′
2i+1} and s2i ∈ {m1

2i, . . . , m
K
2i},

there is at least one solutions of (3.12) which oscillates si times over Ii.

Proof. The result follows from [29, Cor. 1.2], by observing that (3.11) is a periodically

perturbed planar Hamiltonian system of the form z′ = J∇H(z, εt), where J is the

2×2 symplectic matrix. Without entering into discussion of technical details, we just

give a list of the key points that make the setting of [29, 36] applicable to our case. We

denote by S(θ) the area of the planar region containing the elliptic equilibrium point

A(θ) and bounded by the homoclinc orbit of (3.13) enclosing it. Then, the intervals Ii

are chosen so that S ′(θ−i ) > 0 > S ′(θ+
i ) for i odd and S ′(θ−i ) < 0 < S ′(θ+

i ) for i even.

As a final remark, note that the method in [29] applies also when the forcing terms

are not necessarily periodic and, in this case, it is required the additional condition

that θ−i+1 − θ+
i is uniformly bounded away from zero. However, in our situation, p(t)

is a nonconstant periodic function and, by denoting its fundamental period by T , we
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can choose the intervals Ii such that θ±i+2 = θ±i + T for all i ∈ Z, without any further

hypothesis.

It goes without saying that one of the main features of Theorem 3.7 regards

the periodic perturbation p(t) which is no longer required to be small, as shown in

Figure 3.

−3 −2 −1 0 1 2 3 4 5 6 7
−5

−4

−3

−2

−1

0

1

2

3

4

5

u

u
′

1.6 2 2.4 2.8 3.2 3.6 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3. Evolution of u′′ +
√

1 + u2 − 1 = 2 + ε sin(ωt) in terms

of the iterates of the Poincaré map, with ε = 1.5, ω = 0.1 and vary-

ing 500 initial conditions (u(0), u′(0)) where u(0) is within the interval

[−4, 6] and u′(0) = 0. The continuous line denotes the homoclinic orbit

H(xu) of the associated autonomous system (2.3). Again the typical

alternation of zones of stability and instability/randomness appears in

a smaller region due to the fact that only few initial conditions give rise

to solutions bounded in the future.

At last, as we mentioned above, the result achieved in [29] is stable under small

perturbations. This means that, in such a framework, Theorem 3.7 applies to system






x′ = y,

y′ = −ε2c0y − f(x) + p(εt),

with c0 ∈ R.

Finally, we should recall some related theorems about the existence of multiple

multi-bump homoclinics which are based on an abstract variational perturbative ap-

proach, developed by Ambrosetti and Badiale in [5] (see also [6, 14]). These theorems

have found a natural application to differential systems which are perturbations of
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autonomous Schrödinger type equations of the form u′′ − u + ∇V (u) = 0, where,

roughly V (u) ≃ |u|m for m > 2 (cf. [3]). Note that, in the one-dimensional case, the

phase-plane geometry of these autonomous equations is qualitatively similar to the

one of (2.2).

To conclude this section, in order to fix the ideas, let’s recapitulate the relevant

cases which can be tackled using Melnikov type results. As a model to compare

Corollary 3.3, Corollary 3.6 and Theorem 3.7, we take the system

(3.14)







x′ = y,

y′ = −f(x) + k + εp0(ωt),

where we suppose that k > 0, f is a C2-function satisfying (H1) and p0(t) is a

nonconstant 2π-periodic function. Thus the list of the consequence, that have been

achieved by now, is the following.

• Corollary 3.3: for a special form of p0(t) such as p0(t) = cos(t + ϑ0), ω > 0

arbitrary and ε > 0 small, we have found chaos in the sense of the Smale

horseshoe for a suitable iterate of the Poincaré map Ψ associated with system

(3.14).

• Corollary 3.6: for p0(t) an arbitrary function, ω > 0 small and ε > 0 small (de-

pending on the choice of ω), we have found chaos in the sense of the topological

horseshoe for a suitable iterate of the Poincaré map Ψ associated with system

(3.14) relatively to the period interval [0, T ] with T := 2π/ω.

• Theorem 3.7: for p0(t) an arbitrary function, ω > 0 small and |ε| < k (hence also

a large forcing term with range in ]0,+∞[ is allowed), we have found symbolic

dynamics for the Poincaré map Ψ associated with system (3.14) relatively to the

period interval [0, T ] with T := 2π/ω.

The last two results consider the case of the so-called slowly varying perturbations.

Typically, these results guarantee the presence of complex dynamics when a parameter

tends to infinity (like the period T ) or tends to zero (like the coefficient ω in p0(ωt)).

The succeeding step is to provide specific bounds (for instance, lower bounds for the

period) in terms of the associated autonomous system. This will be carried out in

the next section.

3.2.2. Switched systems. Let us consider now a periodic piecewise constant forcing

term which takes two values as follows

(3.15) pk1,k2
(t) :=







k1 for t ∈ [0, t1[,

k2 for t ∈ [t1, t1 + t2[,

with k1, k2 ≥ 0, k1 6= k2 and t1, t2 > 0. We will perform our analysis by assuming

0 < k1 < k2
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and only briefly sketch how to deal when k1 = 0. We also suppose that the funda-

mental period of p(t) splits as

T := t1 + t2.

In this setting, system (S1) is equivalent to the switched system in the phase plane

(x, y) which alternates between two subsystems:

(Si)







x′ = y,

y′ = −f(x) + ki,

for i ∈ {1, 2}. In other words, the solution to (S1) which starts from an initial point

z0 = (x0, y0) is governed by the subsystem (S1) for a fixed period of time t1 and

then it is governed by the subsystem (S2) for another fixed period of time t2. At this

point, the switched system may change back to subsystem (S1) until the time elapsed

is exactly t1 + t2. As a consequence, the Poincaré map Ψ of system (S1) can be

decomposed as Ψ = Ψ2 ◦ Ψ1, where Ψi is the Poincaré map of system (Si) relatively

to the time interval [0, ti], for i ∈ {1, 2}.
This particular choice of the forcing term is convenient to take advantage of the

SAP method that is collected in the Appendix (see also [42, 48] for the details). Fur-

thermore, switched systems are themselves an attractive topic in the field of control

theory (see [9]). Therefore, by considering switching systems, we are looking for a

geometry similar to the one of the “linked twist maps” (LTM) (see [50, 60]). Specifi-

cally, the configuration of the problem we are analyzing recalls the work [49], where

the interplay between an annulus and a strip, instead of the usual two annuli, was

discussed. With these remarks in mind, we are ready to prove the following result.

Theorem 3.8. Assume (H0) and let also p : R → R be a T -periodic stepwise function,

such that p(t) > 0 for all t ∈ R. Then, there exist τ ∗1 and τ ∗2 such that a topological

horseshoe occurs for the Poincaré map associated with system (S1) provided that

t1 > τ ∗1 and t2 > τ ∗2 .

Notice that τ ∗1 and τ ∗2 will be explicitly computed in terms of the forcing term

p(t) (cf. (3.16) and (3.17)).

Proof. Consider two fixed values k1, k2 and let p(t) = pk1,k2
(t) be defined as in (3.15).

In order to work with the SAP method, namely Theorem 4.4, we have to find two

oriented topological rectangles M̃ and Ñ where chaotic dynamics take place. Then,

the analysis will be performed according to these steps which collect the stretching

properties.

Step I: For any path γ contained in M, connecting the two sides M−
l and M−

r ,

there exist two sub-paths γ0, γ1 such that Ψ1(γi) is a path contained in N which

joins the two sides N−
l and N−

r for each i ∈ {0, 1}.
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Step II: For any path γ contained in N , connecting the two sides N−
l and N−

r ,

there exist m ≥ 2 sub-paths γ0, . . . , γm−1 such that Ψ2(γi) is a path contained

in M which joins the two sides M−
l and M−

r for each i ∈ {0, . . . , m− 1}.

We start by giving a suitable construction of these topological oriented rect-

angles. From Section 2 it follows the existence of two homoclinc orbits H(xu(k1))

and H(xu(k2)), one for system (S1) and one for (S2), associated with the energies

Φk1
(xu(k1)) and Φk2

(xu(k2)), respectively. Moreover, Proposition 2.3 leads to

xu(k2) < xu(k1) < xh(k1) < xh(k2),

which is equivalent to said that the region bounded by the homoclinic orbit H(xu(k2))

contains the homoclinc orbit H(xu(k1)).

Let us fix three main energy levels A,B,D ∈ R as follows. Take A < Φk1
(xu(k1))

such that the solution a := x∗(A) of the equation Φk1
(x) = A belongs to the interval

]xu(k2), xu(k1)[. Choose Φk2
(xs(k2)) < D < Φk2

(xu(k2)) in a way that the solutions

d := x−(D) and x+(D) of the equation Φk2
(x) = D are such that xu(k2) < d < a

and xs(k2) < x+(D) < xh(k2). At last, consider B > Φk1
(xu(k1)) so that the solution

b := x∗(B) of Φk1
(x) = B is such that xh(k1) < b < x+(D). In this way, one can

determine three different energy level lines which are VA, UB for system (S1) and OD

for (S2), defined as in (2.7), (2.8) and (2.6), respectively. Now, we consider the closed

regions

SA := {(x, y) ∈ R
2 : A ≤ Ek1

(x, y) ≤ Φk1
(xu(k1)), x ≤ xu(k1)},

SB := {(x, y) ∈ R
2 : Φk1

(xu(k1)) ≤ Ek1
(x, y) ≤ B},

and their union

S := SA ∪ SB.

They are all invariant for the flow associated with system (S1). The region S is

topologically like a strip with a hole given by the part of the plane enclosed by the

homoclinic trajectory H(xu(k1)). We also introduce a closed and invariant annular

region for system (S2), given by

A := {(x, y) ∈ R
2 : D ≤ Ek2

(x, y) ≤ Φk2
(xu(k2))}.

The intersection of S with A determines two disjoint compact sets that we call M (the

one in the upper half-plane) and N (the other symmetric one in the lower half-plane),

that are

M := A∩ S ∩ {(x, y) ∈ R
2 : y > 0},

N := A∩ S ∩ {(x, y) ∈ R
2 : y < 0}.
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One can easily check that they are topological rectangles. At last, we give an orien-

tation as follows

M−
l := M∩VA, M−

r := M∩UB,

N−
l := N ∩OD, N−

r := N ∩H(xu(k2)).

See Figure 4 for a graphical sketch of M̃ and Ñ .
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Figure 4. Left: Link of an annulus with a “strip with hole”. Energy level

lines for system (2.3) where f(u) =
√

1 + x2 − 1 are displayed with k = 2

(blue) and k = 4 (red). Right: Zooming of the topological rectangles with

evidence of the boundaries.

We are now in position to prove Step I. Let us consider system (S1). Then, thanks

to the analysis performed in Section 2, we known the time needed to move from the

point
(

xu(k2),
√

2(A− Φk1
(xu(k2)))

)

to the point
(

xu(k2),−
√

2(A− Φk1
(xu(k2)))

)

along VA. This is, in accord with (2.16),

τVA
:= τV(A; xu(k2)).

From (2.17), the displacement, from the point
(

xu(k2),
√

2(B − Φk1
(xu(k2)))

)

to the

point
(

xu(k2),−
√

2(B − Φk1
(xu(k2)))

)

along UB, requires the following time

τUB
:= τU(B; xu(k2)).

As a result of these computations, we fix

(3.16) τ ∗1 := max{τVA
, τUB

}.

Note that each solution of a Cauchy problem with initial conditions taken in M
evolves, through the action of (S1), inside the invariant region S. More in detail, at

any time t1 > τVA
, all the initial points in M−

l will be moved, along the level line

VA, to points with x < xu(k2) and y < 0 by the action of Ψ1. Any solution u(t) of

u′′ + f(u) = k1 with (u(0), u′(0)) ∈ M−
l starts with u(0) > xu(k2) and a positive

slope, it is strictly increasing until it reaches its maximum value umax = a and then it
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decreases strictly till to the value u(t1) < xu(k2). Moreover, u′(t) is strictly decreasing

on the whole interval [0, t1]. Similarly, for t1 > τUB
, all the initial points in M−

r will be

moved away along the level line UB. The final points will be such that x < xu(k2) and

y < 0. Analogous considerations can be made for the solution u(t) of u′′ + f(u) = k1

with (u(0), u′(0)) ∈ M−
r which achieves the maximum value umax = b. In the region

M, any path connecting M−
l to M−

r must intersect the stable manifold W s(xu(k1)).

Notice that any solution (x(t), y(t)) of system (S1) starting at a point of W s(xu(k1)),

lies on such a manifold and, therefore, y(t) > 0 for all t ≥ 0.

Let γ : [0, 1] → M be a continuous path with γ(0) ∈ M−
l ⊆ VA and γ(1) ∈

M−
r ⊆ UB. First of all, observe that, by the continuity of γ there exists s̄♭, s̄♯ ∈]0, 1[

with s̄♭ ≤ s̄♯ such that γ(s̄♭), γ(s̄♯) ∈ W s(xu(k1)) and γ(s) ∈ SA for all 0 ≤ s ≤ s̄♭, as

well as γ(s) ∈ SB for all s̄♯ ≤ s ≤ 1. By the choice of τ ∗1 , for each t1 > τ ∗1 it follows

that

Ψ1(γ(0)), Ψ1(γ(1)) ∈ {(x, y) : x < xu(k2))), y < 0},
Ψ1(γ(s̄

♭)), Ψ1(γ(s̄
♯)) ∈ {(x, y) : x > xu(k2))), y > 0}.

Thus, the path γ is folded onto itself in the invariant region S by the action of system

S1 as shown in Figure 5.

−4 −2 0 2 4 6 8 10 12

−6

−4

−2

0

2

4

6

x

y

−5 −4 −3 −2 −1
−2

−1

0

1

2

x

y

Figure 5. Left: Representation of a generic path γ (green) in the topo-

logical rectangle M joining M−
l with M−

r and its image (black) at time t1

under the action of the system (S1) where f(u) =
√

1 + x2 − 1 and k = 2.

Right: Zooming of the two crossings between the image of the curve γ with

the topological rectangle N .

Now we set

s′′A := max{s ∈ [0, s̄♭] : Ψ1(γ(s)) ∈ N−
l },

s′A := max{s ∈ [0, s′′A] : Ψ1(γ(s)) ∈ N−
r }.
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By definition, γ(s) ∈ M∩SA and Ψ1(γ(s)) ∈ N for all s ∈ [s′A, s
′′
A] with Ψ1(γ(s

′
A)) ∈

N−
r and Ψ1(γ(s

′′
A)) ∈ N−

l . Analogously, we define

s′′B := max{s ∈ [s̄♯, 1] : Ψ1(γ(s)) ∈ N−
r },

s′B := max{s ∈ [s̄♯, s′′B] : Ψ1(γ(s)) ∈ N−
l },

and we observe that γ(s) ∈ M ∩ SB and Ψ1(γ(s)) ∈ N for all s ∈ [s′B, s
′′
B] with

Ψ1(γ(s
′
B)) ∈ N−

l and Ψ1(γ(s
′′
B)) ∈ N−

r .

For any t1 > τ ∗1 fixed, using an elementary continuity argument, we can determine

a (small) open neighborhood W ofW s(xu(k1))∩M such that y(t) > 0 for all t ∈ [0, t1],

whenever (x(0), y(0)) ∈ W . Thus, finally, if we define

K1,0 := M∩SA \ W , K1,1 := M∩SB \ W ,

then, in accord with Definition 4.2, we have determined two disjoint compact sets

such that satisfy the SAP condition with crossing number 2:

(K1,0,Ψ2) : M̃ ≎−→2 Ñ , (K1,1,Ψ2) : M̃ ≎−→2 Ñ .

At last we consider system (S2) and we prove the stretching property formulated

in Step II. Note that each solution of a Cauchy problem with initial conditions taken

in N evolves through the action of (S2) inside the annular region A which is invariant

for the associated flow. Once the point (b, 0) is fixed as a center for polar coordinates,

if the time increases, then all the points of A \ {(xu(k2), 0)} move along the energy

level lines of (S2) in the clockwise sense. For our purposes, it will be convenient to

introduce an angular variable starting from the half-line L := {(r, 0) : r < b} and

counted positive clockwise from the reference axis L. In this manner all the points

of N are determined by an angle ϑ ∈ ] − π/2, 0[ (mod 2π), while those of M are

determined by an angle ϑ ∈ ]0, π/2[ (mod 2π). In other words, for our auxiliary

polar coordinate system, the region N (respectively, M) lies in the interior of the

fourth quadrant (respectively, first quadrant). Any solution u(t) of u′′ + f(u) = k2

with (u(0), u′(0)) ∈ N−
r starts with u(0) > xu(k2) and a negative slope, it tends as

t→ +∞ to the saddle point of (S2) along the homoclinic orbit, with u(t) decreasing

and u′(t) increasing. On the other hand, any solution with (u(0), u′(0)) ∈ N−
l is

periodic with period equal to the fundamental period of the orbit OD, that we denote

by

TOD
:= 2 τO(D; x+(D)),

by means of (2.15). If we take any path in N connecting N−
r to N−

l we have that its

image under the action of the flow of (S2) looks like a spiral curve contained in A which

winds a certain number of times around the center. In order to formally prove this

fact and to evaluate the precise number of revolutions, we denote by ϑ(t, z) the angle

at the time t ≥ 0 associated with the solution (x(t), y(t)) of system (S2) such that

(x(0), y(0)) = z ∈ N . By the previous considerations and the choice of a clockwise
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orientation, we know that d
dt
ϑ(t, z) > 0 for all z ∈ N . For our next computations we

need also to introduce the time needed to go from the point
(

b,−
√

2(D − Φk2
(b))

)

to the point
(

b,
√

2(D − Φk2
(b))

)

along OD, which is given by

τOD
:= τO(D; b),

consistently with (2.15). Given m ≥ 1, we fix

(3.17) τ ∗2 := τOD
+ (m− 1)TOD

.

We claim that for each fixed time t2 > τ ∗2 the SAP property holds for the Poincaré

map Ψ2 with crossing number (at least) m. A visualization of this step for m = 1 is

given in Figure 6.
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Figure 6. Left: Representation of a generic path γ (green) in the

topological rectangle N joining N−
r with N−

l and its image (black) at

time t1+t2 under the action of the system (S2) where f(u) =
√

1 + x2−1

and k = 4. Right: Zooming of the crossing between the image of the

curve γ with the topological rectangle M.

By the previous observations, we have that

ϑ(t2, z) < 0, ∀ z ∈ N−
r ,

ϑ(t2, z) >
π

2
+ 2(m− 1)π, ∀ z ∈ N−

l .

This allows us to introduce m nonempty subsets K2,0, . . . ,K2,m−1 of N which are

pairwise disjoint and compact. They are defined by

K2,i := {z ∈ N : ϑ(t2, z) ∈ [2iπ, (π/2) + 2iπ]}, ∀i ∈ {0, . . . , m− 1}.

Let γ : [0, 1] → N be a continuous path with γ(0) ∈ N−
r ⊆ H(xu(k2)) and

γ(1) ∈ N−
l ⊆ OD. We fix also an index i ∈ {0, . . . , m− 1}. First of all, observe that,
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by the continuity of γ there exists s̄♭
i, s̄

♯
i ∈]0, 1[ with s̄♭

i < s̄♯
i such that

ϑ(t2, γ(s̄
♭
i)) = 2iπ,

ϑ(t2, γ(s̄
♯
i)) =

π

2
+ 2iπ,

and

2iπ < ϑ(t2, γ(s)) <
π

2
+ 2iπ, ∀ s̄♭

i < s < s̄♯
i

For ease of notation, we define as AI the intersection of A with the first quadrant of

the auxiliary polar coordinate system and we also consider the following two segments

Ax
I := [xu(k2), d] × {0},

Ay
I := {b} ×

[

√

2(D − Φk2
(b)),

√

2(Φk2
(xu(k2)) − Φk2

(b))
]

,

which are on the boundary of AI. By construction, the image Ψ2 ◦γ|[s̄♭
i,s̄

♯
i ]

is contained

in AI and joins Ax
I to Ay

I . On the other hand, the set M as well as its sides M−
l and

M−
r separate Ax

I and Ay
I inside AI. An elementary connectivity argument, allows to

determine s′i and s′′i with s̄♭
i < s′i < s′′i < s̄♯

i such that Ψ2(γ(s
′
i)) ∈ M−

l , Ψ2(γ(s
′′
i )) ∈

M−
r and, Ψ2(γ(s)) ∈ M, for all s ∈ [s′i, s

′′
i ]. Moreover, γ(s) ∈ K2,i for all s ∈ [s′i, s

′′
i ].

In this way our claim is verified because

(K2,i,Ψ2) : Ñ ≎−→ M̃, ∀ i ∈ {0, . . . , m− 1}.

At last, from Step I and Step II we can conclude that there exists a topological

horseshoe for the Poincaré map Ψ = Ψ2◦Ψ1 with full dynamics on 2×m symbols.

Remark 3.9. The above proof can be adapted to cover some slight variants of the

theorem. In particular, the following two observations can be made.

(i) We have proved Theorem 3.8 for a stepwise forcing term. However, the result

still holds for a forcing term p(t) which can be also smooth, although near to

pk1,k2
(t) in the L1-norm. In fact, such a result is stable with respect to small

perturbations in the following sense: for any choice of t1 > τ ∗1 and t2 > τ ∗2 (so

that T = t1 + t2 is fixed) there exists an ε0 > 0 such that, for all c with |c| < ε0

and every forcing term p(t) such that
∫ T

0
|p(t)− pk1,k2

(t)| dt < ε0, the conclusion

of Theorem 3.8 holds for system (S2).

(ii) In Theorem 3.8 we have assumed 0 < k1 < k2. With a minor effort, one can

easily adapt the proof also to the choice of 0 = k1 < k2. Notice that in this

case, the associated dynamical system is described by a switch between two

autonomous systems whose portraits are shown in Figure 2. The regions M and

N are now determined by the intersection of an annular region and a topological

strip.

As already mentioned, a peculiar aspect of our approach is due to the possibility to

provide estimates from below for the period of the forcing term, as given in (3.16) and
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(3.17). In some cases, these constants can be easily determined and are not necessarily

large. To conclude the paper, an example in this direction is given. To simplify the

treatment, we restrict ourselves to consider the nonlinearity f(s) = |s|. Clearly the

function f is not smooth, but since the result is stable for small perturbations, our

example can be adapted to the case of a smooth nonlinearity sufficiently near to the

absolute value.

Example 3.10. Let us consider the second order ODE u′′+|u| = p0,2(t) for T = t1+t2,

which is equivalent to the differential system

(3.18)







x′ = y,

y′ = −|x| + p0,2(t),

where the forcing term p0,2(t) is defined according to (3.15). Then, using essentially

the same argument developed in order to prove Theorem 3.8, symbolic dynamics on

two symbols can be detected for system (3.18). With this respect, we consider two

regions in the phase plane defined as follows

S := {(x, y) ∈ R
2 : 0 ≤ E0(x, y) ≤ 8},

A := {(x, y) ∈ R
2 : ρǫ ≤ E2(x, y) ≤ 2},

where ρǫ := (−ǫ2 + 4ǫ)/2 with ǫ > 0 a sufficiently small fixed real value. The strip

region S is obtained from the equation u′′ + |u| = 0 by considering the area between

the following associated level lines: the unbounded orbit U8 passing through the point

(4, 0) and the line x = −|y| made by the unstable equilibrium point (xu(0), 0) = (0, 0),

the stable manifold Ws(0) and the unstable one W u(0). To construct the annular

region A, we consider the equation u′′ + |u| = 2 and from its phase portrait we select

the area between the homoclinic orbit H(−2) at the saddle point (xu(2), 0) = (−2, 0)

and a periodic orbit Oρǫ that passes through (ǫ, 0) which is a point very close to the

origin. Dealing with u′′ + |u| = 2 we can observe that all the periodic orbits enclosing

the stable center (2, 0) and contained in the right-half phase plane are isochronous

with period 2π. Now, we set the topological rectangles as follows

M := A∩ S ∩ {(x, y) ∈ R
2 : y > 0},

N := A∩ S ∩ {(x, y) ∈ R
2 : y < 0},

and the orientation is analogous to the one just given in the proof of the previous

theorem.

To apply the SAP method we require the following time mapping estimates.

First, the time needed to move along U8 from the point (2
√

2, 2
√

2) to the point

(2
√

2,−2
√

2), which is

τU8
:= τU(8; 4) = 2

∫ 4

2
√

2

ds√
16 − x2

=
π

2
.
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Next, the period τOρǫ
of the periodic orbit Oρǫ , which is τOρǫ

∼ 2π when ǫ is chosen

small enough. In this way, by fixing t1 > π/2, the image at time t = t1 of any

continuous path contained in M which connects M−
l to M−

r , is stretched under the

action of system (3.18) in another continuous path and for it one can find a sub-path

entirely contained in N which connects N−
l to N−

r . Provided that t2 > 4π, the

previous sub-path is again stretched by system (3.18) and at time t = T = t1 + t2 its

image has revolved at least twice around the center (2, 0). From this image, which is

a spiral-like curve, we can detect two sub-paths in M that join the two sides M−
l and

M−
r . In conclusion, if the period of the forcing term p0,2(t) is such that T > 9π/2,

then Theorem 4.4 guarantees dynamics on 1 × 2 symbols for system (3.18), that is a

topological horseshoe occurs.

This toy model is useful to determine the number of eigenvalues of the differential

operator u 7→ u′′ with T -periodic boundary conditions, namely λj = (j − 1)2(2π/T )2

for j = 1, 2, . . . , crossed by the nonlinearity. Since f ′(+∞) = 1, it follows that the

range where complex dynamics take place is between λ3 and λ4.

4. APPENDIX: SAP METHOD

In this section we summarize the topological tool, called stretching along the

paths (SAP) method, which is the core of the application in Section 3.2.2. We refer

to [42, 48] for a detailed presentation of this theory. First, we provide some basic

definitions, adapted to the framework of the present paper.

Definition 4.1. Let R ⊆ R
2 be a set homeomorphic to [0, 1] × [0, 1]. The pair

R̃ := (R,R−) is called oriented topological rectangle if R− = R−
l ∪ R−

r , where R−
l

and R−
r are two disjoint compact arcs contained in ∂R.

Definition 4.2. Given two topological oriented rectangles M̃ := (M,M−), Ñ :=

(N ,N−) and a continuous map φ : domφ ⊆ R
2 → R

2, we say that φ stretches M̃ to

Ñ along the paths and we write

(K, φ) : M̃ ≎−→ Ñ

if K is a compact subset of M∩ domφ and for every path γ : [0, 1] → M such that

γ(0) ∈ M−
l and γ(1) ∈ M−

r (or vice-versa), there exists a subinterval [t′, t′′] ⊆ [0, 1]

such that

• γ(t) ∈ K for all t ∈ [t′, t′′],

• φ(γ(t)) ∈ N for all t ∈ [t′, t′′],

• φ(γ(t′)) and φ(γ(t′′)) belong to different components of N−.

Given a positive integer m, we say that φ stretches M̃ to Ñ along the paths with

crossing number m and we write

(K, φ) : M̃ ≎−→m Ñ
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if there exist m pairwise disjoint compact sets K0, . . . ,Km−1 ⊆ M∩ domφ such that

(Ki, φ) : M̃ ≎−→ Ñ for each i ∈ {0, . . . , m− 1}.

Clearly, the case m ≥ 2 is the more interesting one in the applications because it

lays the groundwork to achieve rich symbolic dynamics. Inspired by the definition of

chaos in the sense of coin tossing or in the sense of Block-Coppel we introduce what

follows.

Definition 4.3. Let φ : domφ ⊆ R
2 → R

2 be a map and let D ⊆ domφ be a

nonempty set. We say that φ induces chaotic dynamics on m ≥ 2 symbols on a set

D if there exist m nonempty pairwise disjoint compact sets

K0, . . . ,Km−1 ⊆ D

such that for each two-sided sequence (si)i∈Z ∈ {0, . . . , m− 1}Z there exists a corre-

sponding sequence (wi)i∈Z ∈ DZ such that

(4.1) wi ∈ Ksi
and wi+1 = φ(wi) for all i ∈ Z,

and, whenever (si)i∈Z is a k-periodic sequence for some k ≥ 1 there exists a k-periodic

sequence (wi)i∈Z ∈ DZ satisfying (4.1).

It is important to note that Definition 4.3 has several relevant consequences which

are discussed in [42, Th. 2.2] and in [40, 49]. In particular, for a one-to-one map φ,

it ensures the existence of a nonempty compact invariant set Λ ⊆ ∪m−1
i=0 Ki ⊆ D

such that φ|Λ is semiconjugate to the Bernoulli shift map on m ≥ 2 symbols by a

continuous surjection Π. Moreover, it guarantees that the set of the periodic points of

φ is dense in Λ and, for all two-sided periodic sequence S ∈ Σm, the preimage Π−1(S)

contains a periodic point of φ with the same period. In view of these properties,

we recognize exactly the requirements needed to assert that a topological horseshoe

occurs (cf. Introduction).

Finally, in order to detect chaos, an useful topological tool is the following result

which takes into account the particular nature of switched systems we deal with.

Theorem 4.4 ([40, Th. 2.1]). Let ϕ : domϕ ⊆ R
2 → R

2 and ψ : domψ ⊆ R
2 → R

2

be continuous maps. Let M̃ = (M,M−) and Ñ = (N ,N−) be oriented rectangles in

R
2. Suppose that

• there exist n ≥ 1 pairwise disjoint compact subsets of M ∩ domϕ, Q0, . . . ,

Qn−1, such that (Qi, ϕ) : M̃ ≎−→ Ñ for i = 0, . . . , n− 1,

• there exist m ≥ 1 pairwise disjoint compact subsets of N ∩ domψ, K0, . . . ,

Km−1, such that (Ki, ψ) : Ñ ≎−→ M̃ for i = 0, . . . , m− 1.
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If at least one between n and m is greater or equal than 2, then the map φ = ψ ◦ ϕ
induces chaotic dynamics on n×m symbols on

Q∗ =
⋃

i=1,...,n
j=1,...,m

Qi ∩ ϕ−1(Kj).

Notice that the trick of the method is the verification of some stretching properties

for the maps ϕ and ψ.

Acknowledgement. This work was performed under the auspices of the Gruppo

Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA)
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[10] F. Battelli and M. Fečkan. Chaos arising near a topologically transversal homoclinic set. Topol.

Methods Nonlinear Anal., 20(2):195–215, 2002.
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