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Abstract We deal with the study of the evolution of the allelic frequencies, at a single
locus, for a population distributed continuously over a bounded habitat. We consider
evolution which occurs under the joint action of selection and arbitrary migration, that
is independent of genotype, in absence of mutation and random drift. The focus is on
a conjecture, that was raised up in literature of population genetics, about the possible
uniqueness of polymorphic equilibria, which are known as clines, under particular
circumstances. We study the number of these equilibria, making use of topological
tools, and we give a negative answer to that question by means of two examples.
Indeed, we provide numerical evidence of multiplicity of positive solutions for two
different Neumann problems satisfying the requests of the conjecture.
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1 Introduction

Population genetics is a field of biology concerning the genetic structure inside the
populations. Its main interest is the understanding of evolutionary processes that make
the complexity of the Nature so intriguing. One of the main causes of the diversity
among organisms are the changes in the genetic sequence. The genome evolution
is influenced by selection, recombination, harmful and beneficial mutations, among
others. This way, population genetics becomes helpful in order to tackle a very broad
class of issues, fromepidemiology, animal or plant breeding, demography and ecology.

The birth of the “modern population genetics” can be traced back at the need to
interlace the Darwin’s evolution theory with the Mendelian laws of inheritance. This
has taken place in the 1920s and early 1930s, when Fisher, Haldane and Wright have
developed mathematical models in order to analyze how the natural selection, along
with other factors, would modify the genetic composition of a population over time.
Accordingly, an impressive moment on the history of this field of the genetics is the
“Sixth International Congress of Genetics” in Ithaca, where all the three fathers of the
genetic theory of evolution have given a presentation of their pioneering works (see
the proceedings edited by Jones 1932).

Mathematical models of population genetics can be described by relative geno-
typic frequencies or relative allelic frequencies, that may depend on both space and
time. A common assumption is that individuals mate at random in a habitat (which
can be bounded or not) with respect to the locus under consideration. Furthermore,
the population is usually considered large enough so that frequencies can be treated
as deterministic. This way, a probability is associated to the relative frequencies of
genotypes/alleles. The dynamics of gene frequencies are the result of some genetic
principles along with several environmental influences, such as selection, segregation,
migration, mutation, recombination and mating, that lead to different evolutionary
processes like adaptation and speciation (see Bürger 2014).

Among these influences, by natural selectionwemean that some genotypes enjoy a
survival or reproduction advantage over other ones. This way, the genotypic and allelic
frequencies change in accord to the proportion of progeny to the next generation of the
various genotypes which is named fitness. Thinking to model real-life populations, we
have to take into account which is unusual that the selection factor acts alone. Since
every organism lives in environments that are heterogeneous, another considerable
factor is the natural subdivision of the population that mate at random only locally.
Thus, migration is often considered as a factor that affects the amount of genetic
change. There are two different ways, in order to model the dispersion or the migration
of organisms: one is of discrete type and the other one is of a continuous nature. If
the population size is sufficiently large and the selection is restricted to a single locus
with two alleles, then deterministic models continuous in time and space lead to
mathematical problems which involve a single nonlinear partial differential equation
of reaction–diffusion type.

In this direction, a seminal paper was given by Fisher (1937). In that work, the
Author studied the frequency of an advantageous gene for a uniformly distributed
population in a one-dimensional habitat which spreads through an intensity constant
selection term. Accordingly, a mathematical model of a cline was built up as a non-
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constant stationary solution of the nonlinear diffusion equation in question. The term
cline was coined by Huxley (1938): “Some special term seems desirable to direct
attention to variation within groups, and I propose the term cline, meaning a grada-
tion in measurable characters.” One of the major causes of cline’s occurrence is the
migration or the selection which favors an allele in a region of the habitat and a dif-
ferent one in another region. The steepness of a cline is considered as an indicating
character of the level of the geographical variation. Another contribution comes from
Haldane (1948), who has studied the cline’s stability by considering as a selection
term a stepwise function which depends on the space and changes its sign.

Some meaningful generalizations of these models have been performed, for exam-
ple, Fisher (1950) introduced a linear spatial dependence in the selection term; Slatkin
(1973) considered a different diffusion term that can model barriers and Nagylaki
(1975) took into account population not necessarily uniformly distributed and terms
of migration–selection that depend on both space and time. During the past decade,
these mathematical treatments have opened the door to a great amount of works that
investigated the existence, uniqueness and stability of clines. Since a complete list
of references of further analysis on clines is out of the scope of this work, we limit
ourselves to cite some of the earliest contributions in the literature that have inspired
the succeeding ones, see for instance Conley (1975), Fleming (1975), Nagylaki (1976,
1978), Fife and Peletier (1977) and Peletier (1978).

Understanding the processes that act in order to have non-constant genetic polymor-
phisms is an important challenge in population genetics. In the present work, we deal
with a class of diallelicmigration–selectionmodels in continuous space and time intro-
duced by Fleming (1975) and Henry (1981). We focus on a conjecture stated in Lou
and Nagylaki (2002), that, for such a kind of reaction–diffusion equations, guesses the
uniqueness of a cline (instead of the existence of multiple ones). In a one-dimensional
setting, we will give a negative answer to that conjecture, by providing two examples
with multiplicity of non-constant steady states. This type of treatment is inspired by
the result, about multiplicity of positive solutions for indefinite weight problems with
Dirichlet boundary conditions, performed in Sovrano and Zanolin (2015). Although
the problem approach has a topological feature, numerical simulations are given in
order to support it.

The plan of the paper is the following. In Sect. 2, we present the class of migration–
selection models considered and the state of the art which has lead to the formulation
of the conjecture of Lou and Nagylaki, with reference to the genetic and mathematical
literature. In Sect. 3, we build up two examples giving a negative answer to this
conjecture. In Sect. 4, we conclude with a discussion.

2 Migration–selection model: the conjecture of Lou and Nagylaki

To ease understanding the conjecture raised up in Lou and Nagylaki (2002), we intro-
duce some notations.We also provide an overview of the classical migration–selection
model, continuous in space and in time, of a population in which the genetic diversity
occurs in one locus with two alleles, A1 and A2.
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1658 E. Sovrano

Let us consider a population continuously distributed in a bounded habitat, say Ω .
In our context, genetic diversity is the result only of the joint action of dispersal within
Ω and selective advantage for some genotypes, so that, no mutation nor genetic drift
will be considered. This way, the gene frequencies, after random mating, are given by
the Hardy–Weinberg relation. The genetic structure of the population is measured by
the frequencies p(x, t) and q(x, t) := (1 − p(x, t)) at time t and location x ∈ Ω of
A1 and A2, respectively.

Thus, by the assumptions made, the mathematical formulation of this migration–
selection model leads to the following semilinear parabolic PDE:

∂p
∂t

= ∆p + λw(x) f (p) in Ω×]0,∞[, (2.1)

where ∆ denotes the Laplace operator and Ω ⊆ RN is a bounded open connected set,
with N ≥ 1, whose boundary ∂Ω isC2. The term λw(x) f (p)models the effect of the
natural selection. More in detail, the real parameter λ > 0 plays the role of the ratio
of the selection intensity and the function w ∈ L∞(Ω) represents the local selective
advantage (if w(x) > 0), or disadvantage (if w(x) < 0), of the gene at the position
x ∈ Ω . Moreover, following Fleming (1975) and Henry (1981), the nonlinear term
we treat is a general function f : [0, 1] → R of class C2 satisfying

f (0) = f (1) = 0, f (s) > 0 ∀ s ∈ ]0, 1[, f ′(0) > 0 > f ′(1). ( f∗)

We also impose that there is no-flux of genes into or out of the habitat Ω , namely we
assume that

∂p
∂ν

= 0 on ∂Ω×]0,∞[, (2.2)

where ν is the outward unit normal vector on ∂Ω . Since p(x, t) is a frequency, then
we are interested only in positive solutions of (2.1)–(2.2) such that 0 ≤ p ≤ 1.

By the analysis developed in Henry (1981), we know that, if the conditions in ( f∗)
hold and 0 ≤ p(·, 0) ≤ 1 in Ω , then 0 ≤ p(x, t) ≤ 1 for all (x, t) ∈ Ω×]0,∞[ and
Eq. (2.1) defines a dynamical system in

X := {p ∈ H1(Ω) : 0 ≤ p(x) ≤ 1, a.e. in Ω},

where H1(Ω) is the standard Sobolev space of integrable functions whose first deriva-
tive is also square integrable. Moreover, the stability of the solutions is determined by
the equilibrium solutions in the space X . Clearly, a stationary solution of the problem
(2.1)–(2.2) is a function p(·) satisfying 0 ≤ p ≤ 1,

− ∆p = λw(x) f (p) in Ω (2.3)

and the Neumann boundary condition

∂p
∂ν

= 0 on ∂Ω. (2.4)
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Notice that p ≡ 0 and p ≡ 1 are constant trivial solutions to problem (2.3)–
(2.4), that correspond to monomorphic equilibria, namely when, in the population,
the allele A2 or A1, respectively, is gone to fixation. So, one is interested in finding
non-constant stationary solutions or, in other words, polymorphic equilibria. Indeed,
our main interest is the existence of clines for system (2.1)–(2.2).

The maintenance of genetic diversity is examined by seeking for the existence of
polymorphic stationary solutions/clines, that are solutions p(·) to system

⎧
⎨

⎩

−∆p = λw(x) f (p) in Ω,

∂p
∂ν

= 0 on ∂Ω,
(Nλ)

with 0 < p(x) < 1 for all x ∈ Ω .
In this respect, the assumption f (s) > 0 for every s > 0 implies that a necessary

condition for positive solutions of problem (Nλ) is that the function w changes its
sign. In fact, by integrating (2.3) over Ω , we obtain

0=
∫

Ω
∆p + λw(x) f (p)dx=

∫

∂Ω

∂p
∂ν

dx + λ

∫

Ω
w(x) f (p)dx=λ

∫

Ω
w(x) f (p)dx .

Notice that we can see the function w in (Nλ) as a weight term which attains both
positive and negative values, so that such a kind of system is usually known as problem
with indefinite weight.

It is a well-known fact that the existence of positive solutions of (Nλ) depends on
the sign of

w̄ :=
∫

Ω
w(x)dx . (2.5)

Indeed, for the linear eigenvalue problem −∆p(x) = λw(x)p(x), under Neumann
boundary condition on Ω , the following facts hold: if w̄ < 0, then there exists a
unique positive eigenvalue having an associated eigenfunction which does not change
sign; on the contrary, if w̄ ≥ 0 such an eigenvalue does not exist and 0 is the only
non-negative eigenvalue for which the corresponding eigenfunction does not vanish
(cf. Brown and Lin 1980, Theorem 3.13).

Furthermore, under the additional assumption of concavity for the nonlinearity:

f ′′(s) ≤ 0, ∀s > 0, (2.6)

it follows that, if w̄ < 0, then there exists λ0 > 0 such that for each λ > λ0 problem
(2.1)–(2.2) has a unique positive non-constant stationary solution (i.e. cline) which is
asymptotically stable (cf. Henry 1981, Theorem 10.1.6).

After these works a great deal of contributions appeared in order to complement
these results of existence and uniqueness on population genetics, (cf. Bandle et al.
1988;Brownet al. 1989;BrownandHess 1990); or to consider also unboundedhabitats
(cf. Fife and Peletier 1981); or even to treat more general uniformly elliptic operators
(cf. Senn and Hess 1982; Senn 1983). Taking into account these works, in Lou and
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Nagylaki (2002) the migration–selection model with an isotropic dispersion, that is
identifiedwith theLaplacian operator,was generalized to an arbitrarymigration,which
involves a strongly uniformly elliptic differential operator of second order [see also
Nagylaki (1989, 1996) for the derivation of this model as a continuous approximation
of the discrete one].

By modeling single locus diallelic populations, there is an interesting family of
nonlinearities which satisfies the conditions in ( f∗) and allows to consider different
phenotypes of alleles, A1 and A2. This family can be obtained by considering the map
fk : R+ → R+ such that

fk(s) := s(1 − s)(1+ k − 2ks), (2.7)

where −1 ≤ k ≤ 1 represents the degree of dominance of the alleles independently
of the space variable (see Nagylaki 1975). In this special case, if k = 0 then the model
does not present any kind of dominance, instead, if k = 1 or k = −1 then the allelic
dominance is relative to A1, in the first case, and to A2 in the second one (the last is
also equivalent to said that A1 is recessive). In view of this, we can make the following
two observations.

Remark 1 In the case of no dominance, i.e. k = 0, from (2.7) we have f0(s) = s(1−s)
which is a concave function. Therefore, we can enter in the settings considered by
Henry (1981). So ifw(x) > 0 on a set of positive measure inΩ and w̄ < 0, then for λ

sufficiently large there exists a unique positive non-trivial equilibrium of the equation
∂p/∂t = ∆p + λw(x)p(1 − p) for every (x, t) ∈ Ω×]0,∞[ under the boundary
condition (2.2).

Remark 2 In the case of completely dominance of allele A2, i.e. k = −1, from (2.7)
we have f−1(s) = 2s2(1 − s) which is not a concave function. Thanks to the results
in Lou et al. (2010), if w(x) > 0 on a set of positive measure in Ω and w̄ < 0, then
for λ sufficiently large there exist at least two positive non-trivial equilibriums of the
equation ∂p/∂t = ∆p + λw(x)2p2(1 − p) for every (x, t) ∈ Ω×]0,∞[ under the
boundary condition (2.2).

We observe that the map s -→ f0(s)/s is strictly decreasing with f0(s) concave.
On the contrary, the map s -→ f−1(s)/s is not strictly decreasing with f−1(s) not
concave. Thus, from Remarks 1 and 2, it arises a natural question which involves the
possibility to weaken the concavity assumption (2.6) further to the monotonicity of
the map s -→ f (s)/s, in order to get uniqueness results of non-trivial equilibria for
problem (2.1)–(2.2).

This is still an openquestion, firstly appeared inLouandNagylaki (2002,Conjecture
5.1), known as the “conjecture of Lou and Nagylaki”.

Conjecture Suppose that w(x) > 0 on a set of positive measure in Ω and such that
w̄ =

∫
Ω wdx < 0. If the map s -→ f (s)/s is monotone decreasing in ]0, 1[, then

(2.1)–(2.2) has at most one non-trivial equilibrium p(t, x) with 0 < p(0, x) < 1 for
every x ∈ Ω , which, if it exists, is globally asymptotically stable (cf. Lou et al. 2013,
p. 4364).
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The study of existence, uniqueness and multiplicity of positive solutions for nonlinear
indefinite weight problems is a very active area of research, starting from the Seven-
ties, and several types of boundary conditions along with a wide variety of nonlinear
functions, classified according to growth conditions, were taken into account. Sev-
eral authors have addressed this topic, see Hess and Kato (1980), Brezis and Oswald
(1986), Alama and Tarantello (1993), Berestycki et al. (1994, 1995) and Amann and
López-Gómez (1998), just to recall the first main papers dedicated. Instead, the recent
literature about multiplicity results for positive solutions of indefinite weight problems
with Dirichlet or Neumann boundary conditions is really very rich. In order to cover
most of the results achieved with different techniques so far, we give reference of the
following bibliography Gómez-Reñasco and López-Gómez (2000), Gaudenzi et al.
(2003), Bonheure et al. (2005), Obersnel and Omari (2006), Girão and Gomes (2009),
Feltrin and Zanolin (2015), Boscaggin (2011), Boscaggin and Garrione (2016) and
Boscaggin et al. (2016).

Nevertheless, as far as we known, there is no answer about the conjecture of Lou
and Nagylaki. It is interesting to notice that the study of the concavity of f (s) versus
themonotonicity of f (s)/s has significance also in the investigation on the uniqueness
of positive solutions for a particular class of indefinite weight problems with Dirichlet
boundary conditions. More in detail, these problems involve positive nonlinearities
which have linear growth at zero and sublinear growth at infinity, namely

{
−∆p = λw(x)g(p) in Ω,

p = 0 on ∂Ω,
(Dλ)

where g : R+ → R+ is a continuous function satisfying

g(0) = 0, g(s) > 0 ∀ s > 0, lim
s→0+

g(s)
s

> 0, lim
s→+∞

g(s)
s

= 0. (g∗)

The state of the art on this topic refers mainly on two papers. From the results
due to Brezis and Oswald (1986) it follows that, if (g∗) holds and, moreover, the map
s → g(s)/s is strictly decreasing, then there exist at most one positive solution of (Dλ)

only if the weight functionw(x) > 0 for a.e. x ∈ Ω . On the other hand, in Brown and
Hess (1990), if the conditions in (g∗) are satisfied for a smooth concave nonlinear term
g and the weight w is a smooth and changing sign function, then there exists at most
one positive solution of (Dλ). Therefore, if the weight function is positive, then the
hypothesis of Brezis–Oswald, concerning the monotonicity of g(s)/s, is more general
than the requirement of Brown–Hess about the concavity of g(s).

At this point one could querywhether something similar to the conjecture ofLou and
Nagylaki happens also for this family of Dirichlet problems. This was done in Sovrano
and Zanolin (2015), where it was shown that the monotonicity of the map s -→ g(s)/s
is not enough to guarantee the uniqueness of positive solutions for problems as in
(Dλ) with an indefinite weight. Through numerical evidence, more than one positive
solution has been detected for an exemplary two-point boundary value problem (Dλ).

123

Author's personal copy



1662 E. Sovrano

3 Multiplicity of clines: the conjecture has negative answer

In this section we look at the framework of the conjecture of Lou and Nagylaki. So,
from now on we tacitly consider a nonlinear function f : [0, 1] → R of class C2

which is not concave, satisfies ( f∗) and is such that the map s -→ f (s)/s is monotone
decreasing.

We concentrate on the one-dimensional case N = 1 and we take as a habitat an
open interval Ω :=]ω1,ω2[ with ω1,ω2 ∈ R such that ω1 < 0 < ω2. This type of
habitats, confined to one-dimensional spaces, have an intrinsic interest in modeling
phenomena which occur, for example, in neighborhoods of rivers, sea shores or hills
(cf. Nagylaki 1978). As in Nagylaki (1975, 1978), we assume that the weight term w

is step-wise. Hence, let us consider the following class of indefinite weight functions

w(x) :=
{

−α x ∈ [ω1, 0[,
1 x ∈ [0,ω2],

(3.1)

such that

w̄ = −ω1α + ω2,

with w̄ defined as in (2.5). In these settings, the indefinite Neumann problem (Nλ)

reads as follows {
p′′ + λw(x) f (p) = 0,
p′(ω1) = 0 = p′(ω2),

(3.2)

with 0 < p(x) < 1 for all x ∈ [ω1,ω2].
Inspired by the results in Sovrano and Zanolin (2015), wewill consider two particu-

lar functions f in order to provide a negative reply to the conjecture under examination.
In both cases, we are going to use a topological argument, that is called shooting
method, and, with the aid of some numerical computations, we give evidence of mul-
tiplicity of positive solutions for the corresponding problems in (3.2). The shooting
method relies on the study of the deformation of planar continua under the action of
the vector field associated to the second order scalar differential equation in (3.2),
whose formulation, in the phase-plane (u, v), is equivalent to the first order planar
system {

u′ = v,

v′ = − λw(x) f (u).
(3.3)

Solutions p(·) of problem (3.2) we are looking for are also solutions (u(·), v(·)) of
system (3.3), such that v(ω1) = 0 = v(ω2).

We set the interval [0, 1] contained in the u-axis as follows

L{v=0} := {(u, v) ∈ R2 : 0 ≤ u ≤ 1, v = 0}.
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Thisway, as a real parameter r ranges between 0 and 1,we are interested in the solution,
(u(·;ω1, (r, 0)), v(·;ω1, (r, 0))), of the Cauchy problem with initial conditions

{
u(ω1) = r,
v(ω1) = 0,

(3.4)

such that (u(ω2;ω1, (r, 0)), v(ω2;ω1, (r, 0))) ∈ L{v=0}. Hence, let us consider the
planar continuum Γ obtained by shooting L{v=0} forward from ω1 to ω2, namely

Γ := {(u(ω2; r), v(ω2; r)) ∈ R2 : r ∈ [0, 1]}.

We define the set of the intersection points between this continuum and the segment
[0, 1] contained in the u-axis, as

S := Γ ∩ L{v=0}.

Then, there exists an injection form the set of the solutions p(·) of (3.2) such that
0 < p(x) < 1 for all x ∈ [ω1,ω2] and the setS \ ({(0, 0)} ∪ {(1, 0)}).

More formally, we denote by ζ(·;ω0, z0) = (u(·;ω0, z0), v(·;ω0, z0)) the solution
of (3.3) with ω0 ∈ [ω1,ω2] and initial condition ζ(ω0;ω0, z0) = z0 = (u0, v0) ∈ R2.
The uniqueness of the solutions for the associated initial value problems guarantee
that the Poincaré map associated to system (3.3) is well defined. Recall that, for any
τ1, τ2 ∈ [ω1,ω2], the Poincaré map for system (3.3), denoted by Φ

τ2
τ1 , is the planar

map which at any point z0 = (u0, v0) ∈ R2 associates the point (u(τ2), v(τ2)) where
(u(·), v(·)) is the solution of (3.3) with (u(τ1), v(τ1)) = z0. Notice thatΦ

τ2
τ1 is a global

diffeomorphism of the plane onto itself.
Under these notations, the recipe of the shootingmethod is the following. A solution

p(·) of (3.2) such that 0 < p(x) < 1 for all x ∈ [ω1,ω2] is identified by a point
(c, 0) ∈ L{v=0} whose image through the action of the Poincaré map, say C :=
Φ

ω2
ω1 ((c, 0)) ∈ Γ , belongs to L{v=0}. This way, the solution p(·) of the Neumann

problem with p(ω1) = c is found looking at the first component of the map

x -→ Φx
ω1
((c, 0)) = (u(x), v(x)),

since, by construction, p′(ω1) = v(ω1) = 0 and p′(ω2) = v(ω2) = 0. This means
that the set S is made by points such that, each of them determines univocally an
initial condition, of the form (3.4), for which the solution (u(·), v(·)) of the Cauchy
problem associated to (3.3) verifies v(ω1) = 0 = v(ω2).

The study of the uniqueness of the clines is based on the study, in the phase-plane
(u, v), of the qualitative properties of the shape of the continuum Γ which is the image
ofL{v=0} under the action of the Poincaré map Φ

ω2
ω1 . More in detail, we are interested

in find real values c ∈]0, 1[ such that

Φω2
ω1
((c, 0)) ∈ Φω2

ω1

(
L{v=0}

)
∩ L{v=0}.
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1664 E. Sovrano

Indeed, our aim is looking for values c ∈]0, 1[ such that the point C = Φ
ω2
ω1 ((c, 0))

belongs toS .
So, let us show now that there exist Neumann problems as in (3.2) that admit more

than one positive solution. Namely, there exist more than one polymorphic stationary
solution for equation:

∂p
∂t

= p′′ + λw(x) f (p). (3.5)

Roughly speaking, if Γ crosses the u-axis more than one time, out of the points
(0, 0) and (1, 0), then #(S \ ({(0, 0)} ∪ {(1, 0)})) > 1 and so, we expect a result of
non-uniqueness of clines for Eq. (3.5).

3.1 First example

Taking into account the definition of the functions in (2.7), given a real parameter
h > 0, let us consider the family of maps f̂h : [0, 1] → R of class C2 such that

f̂h(s) := s(1 − s)(1 − hs + hs2).

Bydefinition f̂ (0) = 0 = f̂ (1).Moreover, to have s -→ f̂h(s)/smonotone decreasing
in ]0, 1[ it is sufficient to assume 0 < h ≤ 3. If the parameter h ranges in ]2, 3], then
it is straightforward to check that f̂h is not concave and f̂h(s) > 0 for every s ∈]0, 1[.

Let us fix h = 3. Then, in this case, all the conditions in ( f∗) are verified and
f̂3(s) = s(1− s)(1− 3s + 3s2). As a consequence, we point out the following result
of multiplicity.

Proposition 1 Let f : [0, 1] → R be such that

f (s) := s(1 − s)(1 − 3s + 3s2). (3.6)

Assume w : [ω1,ω2] → R be defined as in (3.1) with α = 1,ω1 = − 0.21 and
ω2 = 0.2. Then, for λ = 45 the problem (3.2) has at least 3 solutions such that
0 < p(x) < 1 for all x ∈ [ω1,ω2].

Notice that w̄ = − 0.01 < 0, so we are in the hypotheses of the conjecture. Nowwe
follow the scheme of the shooting method, in order to detect three polymorphic sta-
tionary solutions for the Eq. (3.5). This approach, with the help of numerical estimates,
will enable us to prove Proposition 1.

In the phase-plane (u, v), Fig. 1 shows the existence of at least four points (ri , 0) ∈
L{v=0} with i = 1, . . . , 4 such that, by defining their images through the Poincarémap
Φ

ω2
ω1 as Ri := (Ri

u, Ri
v) = Φ

ω2
ω1 ((ri , 0)) ∈ Γ for every i ∈ {1, . . . , 4}, the following

conditions

Ri
v < 0 for i = 1, 3, Ri

v > 0 for i = 2, 4,

are satisfied. This is done, for example, with the choice of the values r1 = 0.1, r2 =
0.4, r3 = 0.65 and r4 = 0.75. The solutions of the Cauchy problems associated to
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Fig. 1 In the phase-plane (u, v): intersection points betweenL{v=0} and Γ = Φ
ω2
ω1 (L{v=0}); solutions of

the Cauchy problemwith initial conditions given by (u(ω1), v(ω1)) = (ri , 0) and numerical approximation
of the values Ri = (u(ω2;ω1, (ri , 0)), v(ω2;ω1, (ri , 0))) with i = 1, . . . , 4. The problem’s setting p′′ +
λw(x) f (p) = 0 is defined as in Proposition 1

system (3.3), with initial conditions (ri , 0) for i = 1, . . . , 4, assume at x = ω2 the
values R1 = (0.230,− 0.066), R2 = (0.922, 0.165), R3 = (0.790,− 0.036) and
R4 = (0.533, 0.055), truncated at the third significant digit. Therefore, we have that
R1

v < 0 < R2
v, R2

v > 0 > R3
v and R3

v < 0 < R4
v . Then, by a continuity

argument (that means an application of the Mean Value Theorem), there exist at least
three real values c1, c2 and c3 such that

r j < c j < r j+1 and C j := Φω2
ω1
((c j , 0)) ∈ S \ ({(0, 0)} ∪ {(1, 0)}) , (3.7)

for every j ∈ {1, . . . , i − 1}. So, let us see how to find such values.
The curve Γ is the result of the integration of several systems of differential equa-

tions (3.3), with initial conditions z0 taken within a uniform discretization of the
interval [0, 1], followed by the interpolation of the approximated values of each solu-
tion ζ(x;ω1, z0) at x = ω2. Hence, Γ represents the approximation of the image of
the interval [0, 1] under the action of the Poincaré map Φ

ω2
ω1 .

As Fig. 1 suggests, the projection of Γ on its first component is not necessarily
contained in the interval [0, 1], which includes the only values of biological pertinence.
Nonetheless, this does not avoid the existence of solutions p(·) of the problem (3.2)
such that 0 < p(x) < 1 for all x ∈ [ω1,ω2]. Thisway, bymeans of a fine discretization
ofL{v=0}, we have found the approximate values of the intersection points C j ∈ Γ ∩
L{v=0}, with j = 1, 2, 3. In this case they are: C1 = (0.273, 0),C2 = (0.601, 0) and
C3 = (0.833, 0), truncated at the third significant digit (see Fig. 1). The intersection
points between L{v=0} and its image Γ through the Poincaré map Φ

ω2
ω1 , namely C j

with j = 1, 2, 3, are in agreement with the previous predictions.
At last, we computed the values c1 = 0.125, c2 = 0.479 and c3 = 0.683, which

verify the required conditions (3.7).
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Fig. 2 In the phase-plane (u, v): solutions of the Cauchy problem associated to system (3.3) with initial
conditions given by (u(ω1), v(ω1)) = (c j , 0)with j = 1, 2, 3. The problem’s setting p′′+λw(x) f (p) = 0
is defined as in Proposition 1

For j = 1, 2, 3, in Fig. 2 are represented the trajectories of the solutions of the
initial value problem

⎧
⎪⎨

⎪⎩

p′′ + λw(x) f (p) = 0,
p(ω1) = c j ,
p′(ω1) = 0,

(3.8)

that, by construction, satisfy p′(ω2) = 0.
We observe also that the values of each solution p(·) of the three different

initial value problems range in ]0, 1[ as desired. Once found the values c j with
j = 1, 2, 3, a numerically result of multiplicity of clines is achieved. Indeed, in
Fig. 3, we display the approximation of the three non-trivial stationary solutions p(·)
of Eq. (3.5) that are identified by the points C j ∈ (S \ ({(0, 0)} ∪ {(1, 0)})), with
j = 1, 2, 3.
We conclude the analysis of this example with some remarks regarding the depen-

dence of the number of positive solutions of the Neumann problem (3.2) with
respect to the parameter λ. With this aim, we take into account the bifurcation
diagram in Fig. 4, which plots initial data against selection intensity rate. Numer-
ical evidence suggests the existence of range of λ where one could find results
of multiplicity of positive solutions. Accordingly, one could argue that there exist
at least two real values λ∗, λ∗ > 0 such that for each λ ∈]λ∗, λ∗[ there exist
at least three non-trivial stationary solutions p(·) of Eq. (3.5). It is interesting to
notice that such kinds of bifurcating diagrams, presenting an “isola” coupled with an
unbounded branch, are not new in literature and have been observed by López-Gómez
and Molina-Meyer (2005); López-Gómez and Tellini (2014) for reaction–diffusion
equations with different nonlinearities and boundary conditions than those treated
here.
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Fig. 3 Polymorphic stationary solutions (clines) and trivial stationary solutions (u ≡ 0 and u ≡ 1) for
Eq. (3.5), found as positive solutions of the Neumann problem p′′ + λw(x) f (p) = 0 satisfying the
framework of Proposition 1

Fig. 4 Bifurcation diagram for the Neumann problem associated with p′′ + λw(x) f (p) = 0 in the
framework of Proposition 1

3.2 Second example

We refer now to the application given in Sovrano and Zanolin (2015) and we adapt it
to our purposes.

So we consider, the nonlinear term f̃ : R+ → R+ defined by

f̃ (s) :=
(
10se−25s2 + s

|s| + 1

)
.

It is straightforward to check that f̃ is not concave and the map s → f̃ (s)/s is strictly
decreasing. Moreover, f̃ (0) = 0 and f̃ (s) > 0 for every s > 0, but f̃ does not take
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value zero in s = 1, since f̃ (1) = 10e−25 + 1 ̸= 0. To satisfy all the conditions in
( f∗), it is sufficient to multiply f̃ by the term arctan(m(1− x))withm > 0. This way,
the following result holds.

Proposition 2 Let f : [0, 1] → R be such that

f (s) :=
(
10se−25s2 + s

|s| + 1

)
arctan(10 − 10s). (3.9)

Assume w : [ω1,ω2] → R be defined as in (3.1) with α = 2.4,ω1 = − 0.255
and ω2 = 0.6. Then, for λ = 3 the problem (3.2) has at least 3 solutions such that
0 < p(x) < 1 for all x ∈ [ω1,ω2].

Notice that, under the assumptions of Proposition 2, the hypotheses of the conjecture
are now all satisfied since w̄ = − 0.012 < 0. To prove the existence of at least three
clines for the Eq. (3.5), we exploit again the shooting method.

So, our main interest is in finding real values ri ∈ ]0, 1[with i ∈ N such that, given
Ri := (Ri

u, Ri
v) = Φ

ω2
ω1 ((ri , 0)), it follows

Ri
v < 0 for i = 2ℓ + 1, Ri

v > 0 for i = 2ℓ, with ℓ ∈ N.

In this case, the features of the nonlinear term along with the joint action of the
indefinite weight give rise to an involved deformation of the segmentL{v=0}. Never-
theless, looking at Fig. 5, we can see that there exist more than one intersection point
between the continuum Γ and the u-axis such that their abscissa is contained in the
open interval ]0, 1[.

This way, the previous observation suggests us the following analysis. By choosing
the values r1 = 0.01, r2 = 0.1, r3 = 0.45 and r4 = 0.9 we compute the points Ri

Fig. 5 In the phase-plane (u, v): intersection points betweenL{v=0} and Γ = Φ
ω2
ω1 (L{v=0}); solutions of

the Cauchy problemwith initial conditions given by (u(ω1), v(ω1)) = (ri , 0) and numerical approximation
of the values Ri = (u(ω2;ω1, (ri , 0)), v(ω2;ω1, (ri , 0))) with i = 1, . . . , 4. The problem’s setting p′′ +
λw(x) f (p) = 0 is defined as in Proposition 2
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Fig. 6 Polymorphic stationary solutions (clines) and trivial stationary solutions (u ≡ 0 and u ≡ 1) for
Eq. (3.5), found as positive solutions of the Neumann problem p′′ + λw(x) f (p) = 0 satisfying the
framework of Proposition 2

Fig. 7 Bifurcation diagram for the Neumann problem associated with p′′ + λw(x) f (p) = 0 in the
framework of Proposition 2

for i = 1, . . . , 4. All the results achieved are truncated at the third significant digit
and so we obtain R1

v = − 0.639 < 0, R2
v = 2.160 > 0, R3

v < − 0.036 and
R4

v = 1.392 > 0. The numerical details are thus represented in Fig. 5.
At this point, an application of the Intermediate Value Theorem guarantees the

existence of at least three initial conditions (c j , 0) with j = 1, 2, 3, such that each
respective solution of the initial value problem (3.8) is also a positive solution of the
Neumann problem (3.2) we are looking for. Indeed, the values c1 = 0.436, c2 = 0.776
and c3 = 0.854 satisfy the conditions in (3.7). Finally, we display the approximation
of the three non-trivial stationary solutions p(·) of Eq. (3.5) in Fig. 6.
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We now direct our attention to the influence of the selection intensity rate on the
number of positive solutions of the Neumann problem (3.2). As previously observed,
we could find, at least numerically, a range of multiplicity of positive solutions with
respect to the parameter λ. This is due to the presence of both an isolated bounded
component (“isola”) and an unbounded branch, as it is shown in Fig. 7, for the resulting
bifurcation diagram.

4 Discussion

When the selection gradient is described by a piecewise constant coefficient, we have
studied the conjecture proposed in Lou and Nagylaki (2002) within a finite and one-
dimensional environment.

Summing up: we have found multiplicity of positive solutions for two different
indefinite Neumann problems defined as in (3.2) where the nonlinear term is an appli-
cation f : [0, 1] → R which assumes two particular forms, the one in (3.6) or that in
(3.9). In our examples, the nonlinearity f is a function of class C2 such that

f (0) = f (1) = 0, f (s) > 0 ∀ s ∈ ]0, 1[, f ′(0) > 0 > f ′(1), ( f∗)

and

f is not concave and s -→ f (s)/s is monotone decreasing. (H )

Hence, uniqueness of positive solutions in general is not guaranteed for indefinite
Neumann problems whose nonlinear term f is a function satisfying ( f∗) and (H),
and the indefinite weight w is defined on a bounded domain Ω with

∫

Ω
w(x)dx < 0. (w∗)

Moreover, since from the concavity of f (s) follows also the concavity of f (1−s), one
could argue whether the uniqueness of a cline is guaranteed under the extra condition
that the map s -→ f (1 − s)/s is decreasing. Thanks to the example presented in
Sect. 3.1,we actually observe that this additional hypothesis is not sufficient for achieve
a result of uniqueness. Nevertheless, in the case of the family of functions fk(s) =
s(1 − s)(1 + k − 2ks) with k ∈ [−1, 1], there are issues in this direction that have
not yet been answered. So, a question still open is the following: under the action of
gene flow, what is the minimal set of assumptions under which a selection gradient
will maintain a unique gene frequency cline?

The delicate matter of the comparison between the concavity versus a condition
about monotonicity arises also in other context than the Neumann one. With this
respect, indefinite weight problems under Dirichlet boundary conditions have been
considered in Sovrano andZanolin (2015)where an example ofmultiplicity of positive
solutions was given. As far as we know, the mathematical literature lacks of a rigorous
multiplicity result in both the two cases.

123

Author's personal copy



A negative answer to a conjecture arising in the study of. . . 1671

The approach suggested in the present paper allows to consider also different
sign-changing weights satisfying condition (w∗) or even

∫
Ω w(x)dx ≥ 0. The main

assumption considered in our examples, in order to showmultiplicity of positive solu-
tions, is that the nonlinearity has a strict local minimum in ]0, 1[. On the other hand,
the presence of a nonlinearity with a unique critical point in ]0, 1[ (which, of course,
is a maximum point) could produce, for such kinds of indefinite Neumann problems,
different behaviors in the number of positive solutions. Indeed, a still open problem,
about the number of positive solutions for (Nλ), is stated by Lou et al. (2013) and
it asks, considering the case

∫
Ω w(x)dx = 0, whether the problem (2.1)–(2.2) has a

unique non-trivial stationary solution for every λ > 0.
Thisway,we see how these issues deserve to be studied in deep from amathematical

point of view and also for their interest in the field of population genetics.
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