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Abstract. We study the second-order boundary value problem{
−u′′ = aλ,µ(t)u2(1− u), t ∈ (0, 1),

u′(0) = 0, u′(1) = 0,

where aλ,µ is a step-wise indefinite weight function, precisely aλ,µ ≡ λ in [0, σ]∪
[1−σ, 1] and aλ,µ ≡ −µ in (σ, 1−σ), for some σ ∈

(
0, 1

2

)
, with λ and µ positive

real parameters. We investigate the topological structure of the set of positive
solutions which lie in (0, 1) as λ and µ vary. Depending on λ and based on a
phase-plane analysis and on time-mapping estimates, our findings lead to three
different (from the topological point of view) global bifurcation diagrams of the
solutions in terms of the parameter µ. Finally, for the first time in the literature,
a qualitative bifurcation diagram concerning the number of solutions in the
(λ, µ)-plane is depicted. The analyzed Neumann problem has an application in
the analysis of stationary solutions to reaction-diffusion equations in population
genetics driven by migration and selection.
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1. Introduction and main results
In this paper, we are concerned with the parameter-dependent Neumann problem

−u′′(t) = aλ,µ(t) g(u(t)), t ∈ (0, 1),

0 ≤ u(t) ≤ 1, t ∈ [0, 1],

u′(0) = 0, u′(1) = 0,

(1.1)

where the nonlinear term g : [0, 1]→ R is

g(s) = s2(1− s), s ∈ [0, 1], (1.2)

and the weight aλ,µ : [0, 1]→ R is a step-wise function defined as

aλ,µ(t) =

{
λ, if t ∈ [0, σ] ∪ [1− σ, 1],
−µ, if t ∈ (σ, 1− σ),

(1.3)

with λ > 0, µ > 0, and σ ∈
(
0, 1

2

)
.

The presence of a sign-changing weight term aλ,µ is a necessary condition for the
existence of non-constant positive solutions to (1.1) - it can be seen by integrating the
differential equation in (0, 1) - and places (1.1) into the family of nonlinear problems
with indefinite weight (cf., [3] for an extensive bibliography on the subject). The
logistic-type nonlinear term g leads to the existence of two trivial solutions, namely
u ≡ 0 and u ≡ 1. For this reason, we seek only non-constant positive solutions whose
notion is made precise as follows.

Definition. A solution to problem (1.1) is a function u ∈ C1([0, 1]) with u′ absolutely
continuous, 0 < u(t) < 1 for all t ∈ [0, 1], and such that u solves the equation in (1.1)
for a.e. t ∈ (0, 1) and satisfies the Neumann boundary conditions.
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The particular form of problem (1.1) is relevant in the field of population genet-
ics to study stationary solutions of reaction-diffusion equations driven by migration
and selection processes acting on a single diallelic locus, as firstly introduced in [16]
(see also [2, 7, 8]). In this framework, u(t) ∈ [0, 1] denotes the frequency of one of
the two alleles involved and t represents the spatial variable. Moreover, the term
g(s) models the selection in case of complete dominance, and aλ,µ(t) represents the
environmental diversity which is reflected by the sign-changing in the direction of
selection.

From the mathematical point of view, the last decade has experienced a huge
interest in indefinite weight problems with a logistic-type nonlinearity from different
perspectives both in the ODE setting (e.g., [1, 4, 5, 6, 10, 17, 18, 20, 22, 24]) and in
the PDE one (e.g., [9, 13, 14, 15, 18, 21, 23]). The main questions addressed were the
existence, the uniqueness as well as the multiplicity of non-constant positive solu-
tions. However, focusing on either a fixed number of sign-changes of the weight term
or on the number of inflection points of the logistic term, no complete description of
global bifurcation diagrams has yet been provided. We notice that some first steps
in this direction are given in [5, 17, 24] through numerical investigations.

In the present work, we pursue the studies undertaken in [5, 6], where a general
nonlinearity superlinear at u = 0 is considered in place of g. Taking advantage of the
precise expression of (1.1) and using the connection times approach (see [11, 12, 26]),
we establish the shape of the bifurcation diagrams for the solutions of (1.1) by using µ
and λ as the main and the secondary bifurcation parameter, respectively. Moreover,
we obtain general non-existence, existence, and multiplicity results, depending on
the values of µ and λ. Our first result in this sense provides sufficient conditions for
the non-existence of solutions.

Theorem 1.1. The following assertions hold:
(i) for all λ > 0, there exists µ∗0(λ) > 0 such that no solution to problem (1.1)

exists for all µ ∈ (0, µ∗0(λ));
(ii) there exists λ∗ > 0 such that for all λ ∈ (0, λ∗) there exists µ∗∗0 (λ) > µ∗0(λ)

such that no solution to problem (1.1) exists for all µ > µ∗∗0 (λ).

This result means, in particular, that no solution exists in a whole neighborhood of
(λ, µ) = (λ, 0) and in a whole neighborhood of (λ, µ) = (0, µ). Thus, we provide a
positive answer to [5, Conjecture A] in this framework.

As a counterpart of Theorem 1.1, we obtain the following result of existence of
solutions for problem (1.1), with high multiplicity for some ranges of the parameters
λ and µ.

Theorem 1.2. With the quantities given in Theorem 1.1, the following assertions
hold:

(i) for all λ ∈ (0, λ∗), there exist µ∗1(λ), µ∗2(λ), µ∗∗2 (λ) ∈ (0,+∞) satisfying

µ∗0(λ) ≤ µ∗1(λ) < µ∗2(λ) < µ∗∗2 (λ) ≤ µ∗∗0 (λ),

such that
(i.a) for all µ ∈ (µ∗1(λ), µ∗∗2 (λ)), problem (1.1) admits at least one solution;
(i.b) for all µ ∈ (µ∗2(λ), µ∗∗2 (λ)), problem (1.1) admits at least two solutions;
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(ii) for all λ ∈ [λ∗,+∞), there exist µ∗1(λ), µ∗2(λ), µ∗4(λ), µ∗8(λ) ∈ (0,+∞) satisfying

µ∗0(λ) ≤ µ∗1(λ) < µ∗2(λ) ≤ µ∗4(λ) ≤ µ∗8(λ),

such that
(ii.a) for all µ > µ∗1(λ), problem (1.1) admits at least one solutions;
(ii.b) for all µ > µ∗2(λ), problem (1.1) admits at least two solutions;
(ii.c) for all µ > µ∗4(λ), problem (1.1) admits at least four solutions;
(ii.d) for all µ > µ∗8(λ), problem (1.1) admits at least eight solutions.

Accordingly, the above result provides a global description of the number of
solutions of (1.1) as (λ, µ) varies in (0,+∞)×(µ∗1(λ), µ∗∗2 (λ)), where µ∗∗2 (λ) is meant
as +∞, for λ ∈ [λ∗,+∞). We stress that Theorem 1.2 not only includes the high
multiplicity for λ ∈ [λ∗,+∞) and large µ, as stated in [5, Theorem 1.3], but, in
addition, deals with the existence and multiplicity of the solutions of (1.1) in the
whole (λ, µ)-plane by dividing {(λ, µ) : λ > 0, µ ∈ (µ∗1(λ), µ∗∗2 (λ))} in sub-regions
in terms of the minimal number of solutions of (1.1). As a consequence, apparently
for the first time in the literature, we obtain the global bifurcation diagram in the
(λ, µ)-plane depicted in Figure 1. Another novelty of our results is that the value λ∗
is sharp in the sense that it divides the region of non-existence of solutions from that
of high multiplicity when µ is large. Moreover, as it will be apparent in Section 6, the
same value λ∗ discerns the behavior of the bifurcation diagrams with µ as bifurcation
parameter, by distinguishing between those made by bounded branches connecting
0 and 1 (for 0 < λ < λ∗), and those with unbounded connected components (for
λ ∈ [λ∗,+∞)).

λ∗

µ∗0(λ)

µ∗1(λ)

µ
∗
2
(λ)µ

∗
4
(λ)

µ
∗
8
(λ

)

µ
∗
∗

0
(λ

)
µ
∗
∗

2
(λ

)

0
λ

µ

#sol. = 0

#sol. ≥ 1

#sol. ≥ 2

#sol. ≥ 4

#sol. ≥ 8

Figure 1. Qualitative bifurcation digram of the solutions to (1.1) in
the (λ, µ)-plane. The curves µ∗0(λ) and µ∗∗0 (λ) define the non-existence
region (gray). The curves µ∗1(λ) and µ∗∗2 (λ) mark out regions of exis-
tence: at least one solution in between µ∗1(λ) and µ∗2(λ) (red) and at least
two solutions in between µ∗2(λ) and µ∗∗2 (λ) (blue). For λ ∈ [λ∗,+∞), at
least four solutions in the region above µ∗4(λ) (yellow), and at least eight
solutions in the one above µ∗8(λ) (green).

The indefinite weight problem (1.1) bears some similarities with the ones stud-
ied in the field of population genetics in [13, 15, 18, 19, 20, 21, 22] that include the
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one-parameter Neumann problem
−u′′(t) = λ ã(t) g(u(t)), t ∈ (0, 1),

0 ≤ u(t) ≤ 1, t ∈ [0, 1],

u′(0) = 0, u′(1) = 0,

(1.4)

where ã : [0, 1]→ R is a sign-changing function. Concerning problem (1.4), the main
questions addressed have involved the uniqueness and the multiplicity of the so-
lutions depending on the sign of

∫ 1

0
ã(t) dt (see the conjectures contained in [13]).

Indeed, when
∫ 1

0
ã(t) dt < 0, [21, Theorem 1.3] is a general result stated in a high

dimensional setting which ensures the existence of at least two solutions to (1.4) for
λ large enough. On the other hand, when

∫ 1

0
ã(t) dt ≥ 0, the existence of at most one

solution to (1.4) has been established in [18, 19] under some additional assumptions
on ã and for λ large enough. Despite that, in both cases, high multiplicity of solu-
tions for problem (1.4) has been proved for some specific symmetric weights ã that
change sign twice and λ large enough: when

∫ 1

0
ã(t) dt < 0, [20, Theorems 1.1, 1.2,

and 1.3] ensure the existence of at least eight solutions to (1.4); when
∫ 1

0
ã(t) dt ≥ 0,

[22, Theorems 1.1 and 1.2] ensure the existence of at least three solutions to (1.4).
To pursue the study of these one-parameter Neumann problems, we reduce the

number of parameters in problem (1.1) by taking µ as a linear function of λ, that is
µ = λK for some K > 0. Thus, we consider (1.4) with

ã(t) = ãK(t) :=

{
1, if t ∈ [0, σ] ∪ [1− σ, 1],
−K, if t ∈ (σ, 1− σ),

(1.5)

and we prove the following result.

Theorem 1.3. Let ã be as in (1.5). Then, there exist K4,K8 ∈ (0,+∞), with K4 <
K8, such that the following assertions hold:

(i) for all K > 0, there exists λ∗1(K) > 0 such that problem (1.4) admits at least
one solution for all λ > λ∗1(K);

(ii) for all K > 2σ
1−2σ , problem (1.4) admits at least two solutions for all λ ∈

[λ∗,+∞), where λ∗ is as in Theorem 1.1;
(iii) for all K > K4, there exists λ∗4(K) > 0 such that problem (1.4) admits at least

four solutions for all λ > λ∗4(K);
(iv) for all K > K8, there exists λ∗8(K) > 0 such that problem (1.4) admits at least

eight solutions for all λ > λ∗8(K).

We notice that the inequality K > 2σ
1−2σ in case (ii) implies that

∫ 1

0
ãK(t) dt < 0

and so we enter in the framework treated in [20]. Compared with the results con-
tained in [20], Theorem 1.3 produces another high multiplicity result with a different
weight function. Moreover, our theorem enriches the analysis of problem (1.4) by es-
tablishing intermediate multiplicity results, with possibly four solutions. We also
refer to Corollary 7.1 for an equivalent version of Theorem 1.3 in the spirit of [20],
i.e., keeping K fixed and varying σ instead.

The paper is organized as follows. In Section 2 and in Section 3, we analyze the
behavior of the solutions of the equations u′′ = −λg(u) and u′′ = µg(u), respectively.
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We also present some preliminary results about the time-maps associated with these
two equations in the phase-plane (u, u′) that are further discussed in Appendices A
and B. In Section 4, on the lines of [11, 12], we derive some technical time-map
estimates to be exploited in Section 5 to prove Theorems 1.1 and 1.2. In Section 6, we
discuss the shape of the global bifurcation diagrams of the solutions (with bifurcation
parameter µ), depending on λ. At last, in Section 7, we study the one parameter
problem (1.4)-(1.5) and, among other results, we give the proof of Theorem 1.3.

2. Phase-plane analysis in [0, σ] and [1− σ, 1]

In this section, we analyze the equation in (1.1) in the intervals [0, σ] and [1− σ, 1],
that is where the weight function aλ,µ ≡ λ > 0. Accordingly, we study

u′′ = −λg(u). (2.1)

Equivalently, we deal with the following planar system{
u′ = v,

v′ = −λg(u),
(2.2)

whose associated energy is

Hλ(u, v) := v2 + 2λG(u), (2.3)

where G is the primitive of the function g defined in (1.2) vanishing at u = 0, that
is

G(u) =

∫ u

0

g(ξ) dξ =
u3

3
− u4

4
, u ∈ [0, 1]. (2.4)

We remark that, since we search solutions (u, v) of (2.2) with u(t) ∈ (0, 1) for all
t ∈ [0, 1], we have to consider only the strip [0, 1]× R in the phase-plane (u, v).

First, we focus our attention on the interval [0, σ]. The analysis in the interval
[1−σ, 1] is analogous and we give the corresponding results at the end of this section.
Since we are interested in solutions to the Neumann problem (1.1), for all s ∈ (0, 1),
let us consider the initial value problem

u′ = v,

v′ = −λg(u),

u(0) = s,

v(0) = 0,

(2.5)

and let (us, vs) be the unique solution of (2.5), considered in its maximal interval of
existence (contained in R). For all s ∈ (0, 1), we denote by T0(s) the time taken by
(us, vs) to go from the point (s, 0) to the line {0} × (−∞, 0) moving along the level
line Hλ(u, v) = 2λG(s) in the (u, v)-plane. We observe that T0(s) is well defined
since us is concave, due to the sign of g.

We set
I0
λ =

{
s ∈ (0, 1) : T0(s) > σ

}
.



An indefinite parameter-dependent Neumann problem 7

We stress that I0
λ is the set of initial values s ∈ (0, 1) such that (2.5) has a positive

solution defined in the whole interval [0, σ]. The following proposition characterises
I0
λ in dependence of λ.

Proposition 2.1. There exist λ∗ > 0 and s∗ ∈ (0, 1) such that
(i) for all 0 < λ < λ∗, I0

λ = (0, 1);
(ii) for λ = λ∗, I0

λ = (0, 1) \ {s∗};
(iii) for all λ > λ∗, there exist s0, s1 ∈ (0, 1) with s0 < s∗ < s1 such that I0

λ =
(0, s0) ∪ (s1, 1).

Proof. Preliminarily, we explicitly define the function s 7→ T0(s). The equation of the
level line associated with (2.3) passing through an arbitrary point (s, 0) ∈ [0, 1]×{0}
is

v2 + 2λG(u) = 2λG(s).

Since g(u) ≥ 0 for all u ∈ [0, 1], from (2.5) we infer that vs(t) ≤ 0 for all t. As a
consequence, we have

v = −
√

2λ
(
G(s)−G(u)

)
and thus

T0(s) =

∫ T0(s)

0

1 dt = −
∫ T0(s)

0

u′(t) dt√
2λ
(
G(s)−G(u(t))

)
= −

∫ u(T0(s))

s

du√
2λ
(
G(s)−G(u)

)
=

1√
2λ

∫ s

0

du√
u4 − s4

4
− u3 − s3

3

.

Performing the change of variable u = sξ, we obtain

T0(s) =
1√
2λ

∫ 1

0

sdξ√
s3 − (sξ)3

3
− s4 − (sξ)4

4

=
1√
2λs

∫ 1

0

dξ√
1− ξ3

3
− s(1− ξ4)

4

.

Therefore, we have

T0(s) =
1√
2λs

Î(s), for all s ∈ (0, 1), (2.6)

where

Î(s) =

∫ 1

0

dξ√
1− ξ3

3
− s(1− ξ4)

4

.

We study the limit of T0(s) as s → 0+ and s → 1−. As a consequence of the
fact that Î(0) ∈ (0,+∞), we deduce

lim
s→0+

T0(s) = +∞. (2.7)
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Moreover, observing that√
1− ξ3

3
− 1− ξ4

4
=

1− ξ
2
√

3

√
3ξ2 + 2ξ + 1, in [0, 1], (2.8)

we immediately obtain that the improper integral Î(1) diverges and so

lim
s→1−

T0(s) = +∞. (2.9)

Next, we analyze the monotonicity of the function T0(s). Accordingly, by dif-
ferentiating (2.6), we obtain

T ′0(s) = − λ

(2λs)
3
2

Î(s) +
1√
2λs

Î ′(s) =

(
− 1

2s
+
Î ′(s)

Î(s)

)
T0(s)

=
T0(s)

2sÎ(s)

(
2sÎ ′(s)− Î(s)

)
, for all s ∈ (0, 1).

(2.10)

We compute

Î ′(s) =
1

2

∫ 1

0

1− ξ4

4

(
1− ξ3

3
− s(1− ξ4)

4

)− 3
2

dξ > 0, for all s ∈ (0, 1),

and

Î ′′(s) =
3

4

∫ 1

0

(
1− ξ4

4

)2(
1− ξ3

3
− s(1− ξ4)

4

)− 5
2

dξ > 0, for all s ∈ (0, 1).

The function η(s) := 2sÎ ′(s)− Î(s) is such that

η′(s) = 2Î ′(s) + 2sÎ ′′(s)− Î ′(s) = Î ′(s) + 2sÎ ′′(s) > 0, for all s ∈ (0, 1),

then η vanishes at most in a point (independent of λ). As a consequence, from (2.10),
we deduce that the positive function T0 has at most a critical point (independent of
λ). From (2.7) and (2.9), we conclude that T0 has a unique minimum point, which
we denote by s∗ (we stress again that it does not depend of λ). In Figure 2, we
represent the graph of T0.

σ

0 1
s

T0(s)

σ

0 1s∗
s

T0(s)

σ

0 1s0 s∗ s1
s

T0(s)

Figure 2. Qualitative graph of the function T0 when λ ∈ (0, λ∗) (left),
λ = λ∗ (center), and λ > λ∗ (right). The points s∗, s0, and s1 are defined
in Proposition 2.1.
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At last, for all fixed s ∈ (0, 1), from (2.6) we have that the function λ 7→ T0(s, λ)
is strictly decreasing and it converges to +∞ as λ→ 0+, and to 0 as λ→ +∞. Thus,
there exists a unique value of λ, that we denote by λ∗, such that

min
s∈(0,1)

T0(s, λ∗) = T0(s∗, λ∗) = σ.

With this position, properties (i), (ii), and (iii) immediately follow. We notice that
the points s0 = s0(λ) and s1 = s1(λ) depend on λ and, by the properties of T0, they
satisfy 0 < s0 < s∗ < s1 < 1 for all λ > λ∗. The proof is complete. �

For λ > 0, we introduce the following set in the (u, v)-plane:

Γ0 = Γ0(λ) =
{(
us(σ), vs(σ)

)
: s ∈ I0

λ

}
. (2.11)

Notice that Γ0 ⊆ (0, 1) × (−∞, 0) and it is a continuous curve parametrized by
s ∈ I0

λ. Moreover, from Proposition 2.1 we have the following (see also Figure 3).

Corollary 2.2. There exists λ∗ > 0 such that
• for λ ∈ (0, λ∗), Γ0(λ) ∩ ({0} × (−∞, 0)) = ∅;
• for λ = λ∗, Γ0(λ) ∩ ({0} × (−∞, 0)) = {(0,−ξ∗)} for some ξ∗ ∈ (0,+∞);
• for λ > λ∗, Γ0(λ)∩({0}×(−∞, 0)) = {(0,−ξ0), (0,−ξ1)} for some 0 < ξ0 < ξ1;

where Γ0(λ) denotes the closure of Γ0(λ) in R2.

0 1
u

v

0 1
u

v

0 1
u

v

Figure 3. Qualitative representation in the (u, v)-plane of the curve
Γ0(λ) defined in (2.11) when λ ∈ (0, λ∗) (left), λ = λ∗ (center), and
λ > λ∗ (right).

With the notation of Corollary 2.2, we observe that

vs0(σ) = −ξ0 > −ξ1 = vs1(σ). (2.12)

Indeed, since the energy in (2.3) is conserved and G is increasing, we have

(vs0(σ))2 = 2λG(s0) < 2λG(s1) = (vs1(σ))2,

thus (2.12) follows, since vsi(σ) < 0, i = 0, 1.
The next result describes the behavior of the curve Γ0 in the (u, v)-plane near

the points (0, 0) and (1, 0).

Proposition 2.3. Let λ > 0. The curve Γ0 = Γ0(λ) satisfies the following properties:
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(i) there exists a neighborhood U0 = U0(λ) = [0, x0(λ)) × (−ε(λ), ε(λ)) of (0, 0)
such that Γ0 ∩ U0 can be parametrized, in the (u, v)-plane, as{

(x,−λσx2) : x ∈ [0, x0(λ))
}

;

(ii) there exists a neighborhood U1 = U1(λ) = (x1(λ), 1] × (−ε(λ), ε(λ)) of (1, 0)
such that Γ0 ∩ U1 can be parametrized, in the (u, v)-plane, as{

(x,−
√
λ tanh(

√
λσ)(1− x)) : x ∈ (x1(λ), 1]

}
.

Proof. Let s ∈ I0
λ. Proceeding as in the proof of Proposition 2.1, for all t ∈ [0, σ],

we have

t =
1√
2λ

∫ s

us(t)

du√
u4 − s4

4
− u3 − s3

3

=
1√
2λs

∫ 1

us(t)
s

dξ√
1− ξ3

3
− s(1− ξ4)

4

. (2.13)

Since t is finite and the integrand is positive, passing to the limit as s → 0+, we
deduce that

lim
s→0+

us(t)

s
= 1, uniformly in t ∈ [0, σ]. (2.14)

Integrating (2.1) in [0, σ], we have

u′s(σ) = −λ
∫ σ

0

g(us(t)) dt

and so

lim
s→0+

u′s(σ)

s2
= −λ lim

s→0+

∫ σ

0

g(us(t))

s2
dt.

Since us(t) ≤ s for all t ∈ [0, σ] and g is strictly increasing in [0, 2/3], we obtain that

0 ≤ g(us(t))

s2
≤ g(s)

s2
≤ 1, for all t ∈ [0, σ] and s ∈ [0, 2/3].

The dominated convergence theorem implies that

lim
s→0+

u′s(σ)

s2
= −λ

∫ σ

0

lim
s→0+

g(us(t))

s2
dt

= −λ
∫ σ

0

lim
s→0+

g(us(t))

(us(t))2

(us(t))
2

s2
dt = −λσ,

where the last equality follows from (2.14) and the facts that lims→0+ us(t) = 0 and
g(u) = u2 + o(u2) for u→ 0. Finally, we conclude that

lim
s→0+

u′s(σ)

(us(σ))2
= −λσ, (2.15)

and so statement (i) is proved.
As for Γ0 near (1, 0), since

t =
1√
2λ

∫ s

us(t)

du√
u4 − s4

4
− u3 − s3

3

, for all t ∈ [0, σ], (2.16)
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from the fact that the integrand behaves like 1/(u − s) for u near s (cf., (2.8)), we
deduce that

lim
s→1−

us(t) = 1, uniformly in t ∈ [0, σ]. (2.17)

Performing the changes of variable u = 1− z and z = (1− s)ξ in (2.16), we obtain

t = − 1√
2λ

∫ 1−s

1−us(t)

dz√
(1− z)4 − s4

4
− (1− z)3 − s3

3

=
1√
2λ

∫ 1−us(t)
1−s

1

(1− s) dξ√(
(1− (1− s)ξ

)4 − s4

4
−
(
(1− (1− s)ξ

)3 − s3

3

, (2.18)

for all t ∈ [0, σ]. By De l’Hôpital’s rule, we have that

lim
s→1−

G(s)−G(1− (1− s)ξ)
(1− s)2

= lim
s→1−

g(s)− g(1− (1− s)ξ)ξ
−2(1− s)

= lim
s→1−

g′(s)− g′(1− (1− s)ξ)ξ2

2

=
g′(1)(1− ξ2)

2
=
ξ2 − 1

2
,

thus, for every t ∈ [0, σ], letting

`t := lim inf
s→1−

1− us(t)
1− s

∈ [0,+∞]

and passing to the lim inf as s→ 1− in (2.18), we deduce

t =
1√
λ

∫ `t

1

1√
ξ2 − 1

dξ =
1√
λ

log

(
`t +

√
`2t − 1

)
=

1√
λ

cosh−1(`t).

By inverting the above equality, we obtain that

`t = cosh(
√
λt) ∈ (1, cosh(

√
λσ)], for all t ∈ [0, σ].

Proceeding in the same way with the lim sup, we thus conclude that

lim
s→1−

1− us(t)
1− s

= cosh(
√
λt), for all t ∈ [0, σ]. (2.19)

Arguing as above, integrating equation (2.1) and using the dominated convergence
theorem, we deduce that

lim
s→1−

u′s(t)

1− s
= −λ lim

s→1−

∫ σ

0

g(us(ξ))

1− s
dξ = −

√
λ sinh(

√
λσ), (2.20)

where the last equality follows from (2.17), (2.19), and the fact that g(u) = 1− u+
o(1− u) for u→ 1. Finally, from (2.19) and (2.20), we have

lim
s→1−

u′s(σ)

1− us(σ)
= −
√
λ tanh(

√
λσ).

Then, statement (ii) is proved. �



12 G. Feltrin, E. Sovrano and A. Tellini

We conclude this section by stating the analogous results in the interval [1−σ, 1].
As above, for every s ∈ (0, 1), we introduce the initial value problem

u′ = v,

v′ = −λg(u),

u(1) = s,

v(1) = 0.

(2.21)

Let (ûs, v̂s) be the unique solution of (2.21), considered in its maximal interval of
existence (contained in R). For all s ∈ (0, 1), we denote by T̂0(s) the time taken by
(ûs, v̂s) to go from the point (s, 0) to the line {0}×(0,+∞) moving backwards along
the level line Hλ(u, v) = 2λG(s) in the (u, v)-plane.

By setting
I1
λ =

{
s ∈ (0, 1) : T̂0(s) > σ

}
,

we state the symmetric statement of Proposition 2.3 as follows.

Proposition 2.4. There exist λ∗ > 0 and s∗ ∈ (0, 1) such that

(i) for all λ ∈ (0, λ∗), I1
λ = (0, 1);

(ii) for λ = λ∗, I1
λ = (0, 1) \ {s∗};

(iii) for all λ > λ∗, there exist s0, s1 ∈ (0, 1) with s0 < s∗ < s1 such that I1
λ =

(0, s0) ∪ (s1, 1).

Similarly, setting

Γ1 = Γ1(λ) =
{

(ûs(1− σ), v̂s(1− σ)) : s ∈ I1
λ

}
, (2.22)

the following results correspond to Corollary 2.2 and Proposition 2.3.

Corollary 2.5. There exists λ∗ > 0 such that

• for λ ∈ (0, λ∗), Γ1(λ) ∩ ({0} × (0,+∞)) = ∅;
• for λ = λ∗, Γ1(λ) ∩ ({0} × (0,+∞)) = {(0, ξ∗)} for some ξ∗ ∈ (0,+∞);
• for λ > λ∗, Γ1(λ) ∩ ({0} × (0,+∞)) = {(0, ξ0), (0, ξ1)} for some 0 < ξ0 < ξ1.

Proposition 2.6. Let λ > 0. The curve Γ1 = Γ1(λ) satisfies the following properties:

(i) there exists a neighborhood U0 = U0(λ) = [0, x0(λ)) × (−ε(λ), ε(λ)) of (0, 0)
such that Γ1 ∩ U0 can be parametrized, in the (u, v)-plane, as{

(x, λσx2) : x ∈ [0, x0(λ))
}

;

(ii) there exists a neighborhood U1 = U1(λ) = (x1(λ), 1] × (−ε(λ), ε(λ)) of (1, 0)
such that Γ1 ∩ U1 can be parametrized, in the (u, v)-plane, as{

(x,
√
λ tanh(

√
λσ)(1− x)) : x ∈ (x1(λ), 1]

}
.

Remark 2.7. By the symmetry of the weight function (1.3), we stress that Γ1 ={
(u,−v) : (u, v) ∈ Γ0

}
and thus the values λ∗, s∗, s0, s1, ξ∗, ξ0, ξ1 in Corollaries 2.2

and 2.5 are exactly the same. Moreover, the neighborhoods U0 and U1 can be taken
to coincide in Propositions 2.3 and 2.6. C
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3. Phase-plane analysis in (σ, 1− σ)

In this section, we analyze the equation in (1.1) in the interval (σ, 1 − σ), that is
where the weight function aλ,µ ≡ −µ < 0. Accordingly, we study

u′′(t) = µg(u) (3.1)

and we consider its associated energy

Hµ(u, v) := v2 − 2µG(u), (3.2)

where G is defined as in (2.4). Let

Mµ :=
{

(u, v) ∈ [0, 1]× R : v2 = 2µG(u)
}

(3.3)

be the level line of Hµ passing through (0, 0). We note that the curveMµ divides the
strip [0, 1]×R into three connected open regions, which can be characterized by the
sign of Hµ. More precisely, Hµ(u, v) > 0 when (u, v) belongs to the two unbounded
regions “outside” Mµ, while Hµ(u, v) < 0 when (u, v) belongs to the bounded re-
gion “inside” Mµ (containing the segment (0, 1)× {0}). Clearly, by definition (3.3),
Hµ(u, v) = 0 for all (u, v) ∈Mµ.

First, since Γ0 and Γ1 behave like a parabola near (0, 0) according to Proposi-
tion 2.3 (i) and Proposition 2.6 (i), we analyze the time Tp = Tp(x) taken to reach
the u-axis for the first time starting from points on the parabola

(x, y(x)) = (x,−kx2), x ∈ (0, 1), k > 0, (3.4)

and moving along the level lines associated with (3.2).
We observe that if k2 ≤ µ

6 the parabola (3.4) does not intersect the manifold
Mµ in the strip (0, 1) × R of the (u, v)-plane. On the contrary, if k2 > µ

6 there
is a unique intersection whose abscissa is denoted by xp = xp(µ). We extend this
definition in the case k2 ≤ µ

6 by setting xp = 1 so that Tp is defined in (0, xp) for
every k > 0.

For x ∈ (0, xp), let m(x) be the abscissa of the intersection point between
the level line of (3.2) through (x, y(x)) and the segment (0, 1) × {0}. From (3.1)
we have that u is strictly decreasing along the level lines associated with (3.2) in
(0, 1)× (−∞, 0], as a consequence

0 < m(x) < x < 1. (3.5)

Moreover, m(x) satisfies

(y(x))2 − 2µG(x) = −2µG(m(x)). (3.6)

Hence, from (3.2) and (3.6), the time Tp we are interested in is given by

Tp(x) =

∫ x

m(x)

du√
(y(x))2 + 2µ(G(u)−G(x))

=

∫ 0

m(x)−x

dũ√
(y(x))2 + 2µ(G(x+ ũ)−G(x))

=

∫ 1

0

(x−m(x)) dξ√
(y(x))2 + 2µ(G(x− (x−m(x))ξ)−G(x))

, (3.7)

where we have performed the changes of variable u = x+ ũ and ũ = −(x−m(x))ξ.
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In the following result, we collect some properties of Tp.

Proposition 3.1. The function Tp : (0, xp)→ (0,+∞) is continuous, strictly increas-
ing, and satisfies:

(i) lim
x→0+

Tp(x) = k
µ ;

(ii) if xp < 1, then lim
x→(xp)−

Tp(x) = +∞.

Proof. The continuity follows directly from expression (3.7). To prove the limit in (i),
we first claim that the function m(x) in a right neighborhood of 0 behaves as follows

m(x) = x− k2

2µ
x2 + o(x2), as x→ 0+. (3.8)

Indeed, (3.5) implies that
lim
x→0+

m(x) = 0.

Recalling (3.4), we rewrite (3.6) as(
m(x)

x

)3(
1

3
− m(x)

4

)
= − k

2

2µ
x+

(
1

3
− x

4

)
.

Thus, by taking the lim inf and lim sup as x→ 0+ in the previous relation, we obtain
that l := lim infx→0+

m(x)
x and L := lim supx→0+

m(x)
x satisfy l3 = L3 = 1. Hence, it

follows that

lim
x→0+

m(x)

x
= 1, (3.9)

which verifies the first term in the expansion (3.8). From (3.6), we deduce that

m(x)− x
x2

(
1 + m(x)

x + m(x)2

x2

3
−
x+m(x) + m(x)2

x + m(x)3

x2

4

)
= − k

2

2µ
,

which, thanks to (3.9), implies that

lim
x→0+

m(x)− x
x2

= − k
2

2µ

and concludes the proof of (3.8). By computing

G(x− (x−m(x))ξ)−G(x) =

=
−3x2(x−m(x))ξ + 3x(x−m(x))2ξ2 − (x−m(x))3ξ3

3

− −4x3(x−m(x))ξ + 6x2(x−m(x))2ξ2 − 4x(x−m(x))3ξ3 + (x−m(x))4ξ4

4
,

from (3.8), we obtain

lim
x→0+

G (x− (x−m(x))ξ)−G (x)

x4
= − k

2

2µ
ξ, for every ξ ∈ (0, 1).
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Hence, it follows from (3.7) that

lim
x→0+

Tp(x) = lim
x→0+

∫ 1

0

x−m(x)
x2√

(y(x))2

x4 + 2µG(x−(x−m(x))ξ)−G(x)
x4

dξ

=
k2

2µ

∫ 1

0

dξ√
k2(1− ξ)

=
k

µ
,

proving (i).

Statement (ii) directly follows by continuity, since the time taken to reach the
u-axis on the manifoldMµ is +∞ and, as x→ (xp)

−, the starting point approaches
the intersection of the parabola and the manifold.

It remains to prove the monotonicity of Tp(x). By differentiating (3.7), we
obtain

T ′p(x) =

∫ 1

0

N(x, ξ)
(
(y(x))2 + 2µ(G(x− (x−m(x))ξ)−G(x))

)− 3
2 dξ,

where we have set

N(x, ξ) = (1−m′(x))
(
(y(x))2 + 2µ(G(x− (x−m(x))ξ)−G(x))

)
(3.10)

− (x−m(x))
(
y(x)y′(x) + µ(g(x− (x−m(x))ξ)(1− (1−m′(x))ξ)− g(x))

)
.

We aim to show that N(x, ξ) > 0 for all x ∈ (0, xp) and ξ ∈ (0, 1). To this end, we
observe that, by differentiating (3.6), we get

y(x)y′(x)− µg(x) = −µg(m(x))m′(x), (3.11)

thus (3.10) and (3.11) give that

N(x, 1) = (1−m′(x))
(
(y(x))2 + 2µ(G(m(x))−G(x))

)
− (x−m(x))

(
y(x)y′(x) + µ(g(m(x))m′(x)− g(x))

)
= 0.

Lemma A.1 in Appendix A shows that ∂ξN(x, ξ) < 0 for all x ∈ (0, xp) and ξ ∈ (0, 1).
This concludes the proof. �

Second, according to Proposition 2.3 (ii) and Proposition 2.6 (ii), we analyze
the time Tl = Tl(x) taken to reach the u-axis for the first time starting from points
on the line

(x, y(x)) = (x,−k(1− x)), x ∈ (0, 1), k > 0, (3.12)

and moving along the level lines associated with (3.2).
We denote by xl = xl(µ) the abscissa of the unique intersection of such a line

with the setMµ. In analogy with the previous situation, for x ∈ (xl, 1), with m(x)
we still indicate the abscissa of the intersection point between the level line of (3.2)
through (x, y(x)) and the segment (0, 1) × {0}. With this notation, the time-map
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Tl(x) is defined for every x ∈ (xl, 1) and is given by

Tl(x) =

∫ x

m(x)

du√
(y(x))2 + 2µ(G(u)−G(x))

=

∫ 1−m(x)

1−x

dũ√
(y(x))2 + 2µ(G(1− ũ)−G(x))

=

∫ 1−m(x)
1−x

1

(1− x) dξ√
(y(x))2 + 2µ(G(1− (1− x)ξ)−G(x))

. (3.13)

The properties of Tl are contained in the following result.

Proposition 3.2. The function Tl : (xl, 1)→ (0,+∞) is continuous, strictly decreas-
ing, and satisfies:

(i) lim
x→1−

Tl(x) = 1√
µ arctan k√

µ ;

(ii) lim
x→(xl)+

Tl(x) = +∞.

Proof. The continuity and (ii) follow exactly as in Proposition 3.1. As for state-
ment (i), we start by showing that

m(x) = 1−

√
1 +

k2

µ
(1− x) + o(1− x), as x→ 1−. (3.14)

Indeed, from (3.11), we obtain that

m′(x) =
µg(x)− y(x)y′(x)

µg(m(x))
> 0, for all x ∈ (xl, 1), (3.15)

since g is positive in (0, 1), y is negative and y′ is positive. Thus, limx→1m(x) exists
and, by taking the limit in (3.6), it belongs to G−1({G(1)}). Since G is strictly
increasing in [0, 1], necessarily

lim
x→1−

m(x) = 1.

If we denote
l := lim inf

x→1−
m′(x), L := lim sup

x→1−
m′(x),

thanks to (3.15) and the generalized De l’Hôpital’s rule, we deduce

µ+ k2

µl
=
µg′(1)− k2

µg′(1)l
= lim inf

x→1−

µg′(x)− y′(x)2 − y(x)y′′(x)

µg′(m(x))m′(x)
≤ l

≤ L ≤ lim sup
x→1−

µg′(x)− y′(x)2 − y(x)y′′(x)

µg′(m(x))m′(x)
=
µg′(1)− k2

µg′(1)L
=
µ+ k2

µL
.

We thus have that all the inequalities in the previous relation are actually equalities
and we conclude that

lim
x→1−

1−m(x)

1− x
= lim
x→1−

m′(x) =

√
1 +

k2

µ
.
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The proof of (3.14) is complete. From

lim
x→1−

G(1− (1− x)ξ)−G(x)

(1− x)2
= lim
x→1−

g(1− (1− x)ξ)ξ − g(x)

−2(1− x)
=

= lim
x→1−

g′(1− (1− x)ξ)ξ2 − g′(x)

2
=

1− ξ2

2
, for every ξ ∈ (0, 1),

by passing to the limit as x→ 1− in (3.13), we obtain

lim
x→1−

Tl(x) =

∫ √
1+ k2

µ

1

dξ√
k2 + µ(1− ξ2)

=
1
√
µ

arctan
k
√
µ
,

which proves (i).
To study the monotonicity of Tl, we can repeat the computations of the proof

of Proposition 3.1 and conclude by Lemma A.2. �

4. Analysis of connection times from Γ0 to Γ1

This section is devoted to the study of the time necessary to “connect”, in the strip
[0, 1]×R of the (u, v)-plane, the curve Γ0 defined in (2.11) with the curve Γ1 defined
in (2.22) by moving along the level lines associated with (3.2). We observe that
connections are possible only inside the region “embraced” by Mµ (see Figures 4
and 7). A fundamental property that we repeatedly use throughout this section
is that Γ0 and Γ1 are mutually symmetric with respect to the axis {v = 0} (see
Remark 2.7).

Since the shapes of Γ0 and Γ1 depend on λ in accord with Corollaries 2.2
and 2.5, it is convenient to divide the analysis into two cases: λ ∈ [λ∗,+∞) and
λ ∈ (0, λ∗).

4.1. The case λ ∈ [λ∗,+∞)

Let λ ∈ [λ∗,+∞) be fixed. From the behavior near (0, 0) of Mµ defined in (3.3),
which is given by

|v| =
√

2µG(u) =

√
2

3
µu

3
2 + o(u

3
2 ), as u→ 0+, (4.1)

and the properties of Γ0 described in Corollary 2.2, we can ensure the existence
of at least two intersections between Γ0 and Mµ in (0, 1) × R. Accordingly, let
sM0 , sM1 ∈ (0, 1) with sM0 < sM1 be such that

(usM0 (σ), vsM0 (σ)), (usM1 (σ), vsM1 (σ)) ∈Mµ. (4.2)

In principle, there could be more than two values s ∈ (0, 1) giving intersections
between Γ0 and Mµ; if it is the case, we consider only the closest to 0 and to 1,
respectively. This implies that

usM0 (σ) < usM1 (σ). (4.3)

Indeed, thanks to our definition, we have that the points (us(σ), vs(σ)) ∈ Γ0 lie
outside the region “embraced” byMµ for s ∈ (sM0 , s0) ∪ (s1, s

M
1 ), where s0 and s1
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are the ones given by Proposition 2.1 (iii). Therefore, if we assume by contradiction
that (4.3) does not hold, by continuity and (2.12) we have{

(us(σ), vs(σ)) : s ∈ [sM0 , s0)
}
∩
{

(us(σ), vs(σ)) : s ∈ (s1, s
M
1 ]
}
6= ∅,

against the uniqueness of solution for the initial value problems (2.5).
Recalling the expression of the energy Hµ given in (3.2), we introduce the

function
hµ(s) = Hµ(us(σ), vs(σ)), s ∈ (0, sM0 ] ∪ [sM1 , 1), (4.4)

and we extend it by continuity in s = 0 and s = 1. By the sign properties ofHµ in the
regions separated byMµ (see the discussion in Section 3), we deduce that hµ(s) < 0
for all s ∈ (0, sM0 )∪ (sM1 , 1] and, moreover, hµ vanishes in 0, sM0 and sM1 . Therefore,
the function hµ has at least one local minimum in (0, sM0 ). At last, it is easy to
infer that s = 1 is a global minimum point of hµ. Indeed, by denoting (m(us(σ)), 0)
the intersection point between the level line of (3.2) passing through (us(σ), vs(σ))
and the u-axis, we have {hµ(s) : s ∈ (0, sM0 ) ∪ (sM1 , 1)} = {−G(m(us(σ))) : s ∈
(0, sM0 ) ∪ (sM1 , 1)}, by energy conservation, and the monotonicity of G gives the
assertion.

From now on, for sake of simplicity, we study the situation in which hµ has a
unique local minimum point in (0, sM0 )∪(sM1 , 1). In this case, such a point belongs to
(0, sM0 ) and the qualitative graph of hµ is depicted in Figure 4 (left). The situation
which includes multiple extrema points of hµ can be treated similarly and contains
the minimal configuration we investigate here.

Let us call sτ0 the (local) minimum point of hµ in (0, sM0 ), and sτ1 the point in
(sM1 , 1) such that hµ(sτ0) = hµ(sτ1). We stress that

0 < sτ0 < sM0 < sM1 < sτ1 < 1

and that the level line Hµ(u, v) = Hµ(usτ0 (σ), vsτ0 (σ)) is tangent to the curve Γ0 in
(usτ0 (σ), vsτ0 (σ)). See Figure 4 (right) for a graphical representation.

0 1

sτ0 sM0

sM1

sτ1
s

hµ(s)

0 1

Γ0

Γ1 Mµ

P (sτ0 )

P (sτ1 )
P (sM0 )

P (sM1 )

u

v

Figure 4. For λ ∈ [λ∗,+∞), qualitative representations of the graph
of the function hµ defined in (4.4) (left) and of Γ0 (blue), Γ1 (violet),
Mµ (pink) along with some level lines of (3.2) (gray) in the (u, v)-plane
(right). We set P (s) = (us(σ), vs(σ)).



An indefinite parameter-dependent Neumann problem 19

Since we can parametrize the curve Γ0 ∩ {(u, v) ∈ (0, 1) × R : Hµ(u, v) > 0}
using the parameter s ∈ (0, sM0 ) ∪ (sM1 , 1), we divide the study of the connection
times into four cases according to whether s belongs to one of the following intervals:
(0, sτ0), (sτ0 , s

M
0 ), (sM1 , sτ1), and (sτ1 , 1). We treat s = sτ0 and s = sτ1 as limit cases.

The graphs of these connection times are shown in Figure 5.

0 1sτ0 sM0 sM1 sτ1

L0

L1

`01,2

`03 = `11,2

`13

s

Ti(s)

Figure 5. For λ ∈ [λ∗,+∞), qualitative graphs of Ti, with i = 1, 2, 3,
which are the times necessary to connect Γ0 to Γ1, as functions of the
initial data u(0) = s of (2.5): T1 (green), T2 (blue), and T3 (pink).

Case 1. Let s ∈ (0, sτ0). In this case, by the properties of hµ, there are three solutions
ξs1, ξ

s
2, and ξs3 of hµ(s) = hµ(ξ) with

0 < ξs1 = s < sτ0 < ξs2 < sM0 < sM1 < ξs3 < sτ1 < 1. (4.5)

Let xi(s) = uξsi (σ) and yi(s) = −vξsi (σ), so that the three points (xi(s), yi(s)),
i = 1, 2, 3, belong to the intersection between Γ1 and the level lines of (3.2) passing
through (us(σ), vs(σ)). We remark that, for all s ∈ (0, sτ0),

x1(s) < x2(s) < x3(s). (4.6)

Indeed, let s̄ ∈ (0, sτ0) be fixed and let O denote the level line of (3.2) passing through
(us̄(σ), vs̄(σ)). Thanks to our minimality assumption, by comparing the values of the
energy (3.2) on the points of Γ0 with the value of the energy on O (see Figure 4),
we have that the points (us(σ), vs(σ)) ∈ Γ0 lie outside the region “embraced” by O
for s ∈ (0, ξs̄1) ∪ (ξs̄2, s

M
0 ) ∪ (sM1 , ξs̄3), while they lie inside for s ∈ (ξs̄1, ξ

s̄
2) ∪ (ξs̄3, 1).

Therefore, if we assume by contradiction that x2(s̄) ≤ x1(s̄), by continuity we have{
(us(σ), vs(σ)) : s ∈ (0, ξs̄1]

}
∩
{

(us(σ), vs(σ)) : s ∈ [ξs̄2, s
M
0 )
}
6= ∅,

against the uniqueness of solution for the initial value problems (2.5). A similar
reasoning, together with (4.3), shows that x2(s̄) < x3(s̄).
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The time necessary for a point (us(σ), vs(σ)) ∈ Γ0 to reach Γ1 the first, the
second, and the third time is defined as follows

Ti(s) =

∫ us(σ)

m(us(σ))

du√
(vs(σ))2 + 2µ(G(u)−G(us(σ)))

+

∫ xi(s)

m(us(σ))

du√
(vs(σ))2 + 2µ(G(u)−G(us(σ)))

, i = 1, 2, 3.

(4.7)

Therefore, all the three connection times Ti, i = 1, 2, 3, are continuous since s 7→
(us(σ), vs(σ)) is continuous. Moreover, due to (4.6), they satisfy, for all s ∈ (0, sτ0),

0 < T1(s) < T2(s) < T3(s). (4.8)

First, we claim that

lim
s→0+

T1(s) =
2λσ

µ
=: L0. (4.9)

To prove the claim, for all k ∈ (0,+∞), let us define

P(k) :=
{

(x,−kx2) : x ∈ [0, 1]
}
,

and denote through TP(k)(P ) the time necessary for a point P = (xP , yP ) ∈ P(k)
to reach (xP ,−yP ) by moving along the level lines of (3.2). By Proposition 2.3 (i),
we have that Γ0 behaves like the parabola P(λσ) in a neighborhood of (0, 0). As
a consequence, for every k−, k+ ∈ (0,+∞) with k− < λσ < k+, there exist two
neighborhoods U0(k−) and U0(k+) of (0, 0) such that in U0(k−) ∩ U0(k+) the curve
Γ0 is between the two parabolas P(k−) and P(k+). Therefore, we have that

TP(k−)(ζ
−
s ) < T1(s) < TP(k+)(ζ

+
s ), for all s sufficiently close to 0,

where ζ−s , ζ
+
s are the abscissas of the first intersection points between the level

line of (3.2) passing through (us(σ), vs(σ)) and the parabolas P(k−) and P(k+),
respectively (for s small enough). Using the energy conservation, we have ζ±s → 0
as s→ 0+. Next, from Proposition 3.1 (i), we infer

2k−
µ

= lim
s→0+

TP(k−)(ζ
−
s ) ≤ lim

s→0+
T1(s) ≤ lim

s→0+
TP(k+)(ζ

+
s ) =

2k+

µ
.

From the arbitrariness of k− and k+, (4.9) follows and the claim is proved.
Next, we claim that

lim
s→0+

T2(s) = lim
s→0+

T3(s) = +∞.

Since 0 < m(us(σ)) < us(σ) < s for all s ∈ (0, sM0 ) ∪ (sM1 , 1), we have that

lim
s→0+

(us(σ), vs(σ)) = (0, 0), lim
s→0+

m(us(σ)) = 0.

Recalling (4.5), the facts that hµ(sM0 ) = 0, hµ < 0 in (sτ0 , s
M
0 ), and hµ(s) → 0 as

s→ 0+ (see also Figure 4), we deduce that lims→0+ ξs2 = sM0 and so

lim
s→0+

x2(s) = usM0 (σ) > 0.
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Consequently, we have

lim
s→0+

T3(s) ≥ lim
s→0+

T2(s) ≥ lim
s→0+

∫ x2(s)

m(us(σ))

du√
(vs(σ))2 + 2µ(G(u)−G(us(σ)))

=

∫ u
sM0

(σ)

0

du√
2µG(u)

= +∞,

since G(u) = u3/3 + o(u3) as u→ 0+. Then, the claim is proved.
Third, since lims→(sτ0 )− ξ

s
1 = lims→(sτ0 )− ξ

s
2 = sτ0 , and lims→(sτ0 )− ξ

s
3 = sτ1 , we

have

lim
s→(sτ0 )−

x1(s) = lim
s→(sτ0 )−

x2(s) = usτ0 (σ), lim
s→(sτ0 )−

x3(s) = usτ1 (σ).

Therefore, we obtain

lim
s→(sτ0 )−

T1(s) = lim
s→(sτ0 )−

T2(s) = `01,2, lim
s→(sτ0 )−

T3(s) = `03,

where

`01,2 := 2

∫ usτ0
(σ)

m(usτ0
(σ))

du√
(vsτ0 (σ))2 + 2µ(G(u)−G(usτ0 (σ)))

, (4.10)

`03 :=

∫ usτ0
(σ)

m(usτ0
(σ))

du√
(vsτ0 (σ))2 + 2µ(G(u)−G(usτ0 (σ)))

+

∫ usτ1
(σ)

m(usτ0
(σ))

du√
(vsτ0 (σ))2 + 2µ(G(u)−G(usτ0 (σ)))

. (4.11)

We notice that 0 < `01,2 < `03 < +∞ since usτ0 (σ) < usτ1 (σ).
Case 2. Let s ∈ (sτ0 , s

M
0 ). Here, by arguing as in Case 1, one can prove that there

are three intersection points (xi(s), yi(s)), i = 1, 2, 3, between Γ1 and the level line
of (3.2) passing through (us(σ), vs(σ)), and satisfying (4.6). Therefore, we define the
times Ti, with i = 1, 2, 3, as in (4.7), which are continuous and satisfy (4.8) for s in
the considered range. A simple argument shows that

lim
s→(sτ0 )+

T1(s) = lim
s→(sτ0 )+

T2(s) = `01,2, lim
s→(sτ0 )+

T3(s) = `03.

From

lim
s→(sM0 )−

(x1(s), y1(s)) = (0, 0),

lim
s→(sM0 )−

(vs(σ))2 − 2µG(us(σ)) = lim
s→(sM0 )−

(y1(s))2 − 2µG(x1(s)) = 0,

lim
s→(sM0 )−

us(σ) = usM0 (σ) ∈ (0, 1),

lim
s→(sM0 )−

m(us(σ)) = m(usM0 (σ)) = 0,

we have
lim

s→(sM0 )−
T1(s) = lim

s→(sM0 )−
T2(s) = lim

s→(sM0 )−
T3(s) = +∞.
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Case 3. Let s ∈ (sM1 , sτ1). Here, by arguing as in Case 1, one can prove that there
are three intersection points (xi(s), yi(s)), i = 1, 2, 3, between Γ1 and the level line
of (3.2) passing through (us(σ), vs(σ)), and satisfying (4.6). Therefore, we define the
times Ti, with i = 1, 2, 3, as in (4.7), which are continuous and satisfy (4.8) for s in
the considered range. From

lim
s→(sM1 )+

(x1(s), y1(s)) = (0, 0),

lim
s→(sM1 )+

(vs(σ))2 − 2µG(us(σ)) = lim
s→(sM1 )+

(y1(s))2 − 2µG(x1(s)) = 0,

lim
s→(sM1 )+

m(us(σ)) = m(usM1 (σ)) = 0,

lim
s→(sM1 )+

us(σ) = usM1 (σ) ∈ (0, 1),

we have
lim

s→(sM1 )+
T1(s) = lim

s→(sM1 )+
T2(s) = lim

s→(sM1 )+
T3(s) = +∞.

A simple argument shows that

lim
s→(sτ1 )−

T1(s) = lim
s→(sτ1 )−

T2(s) = `11,2, lim
s→(sτ1 )−

T3(s) = `13,

where

`11,2 :=

∫ usτ1
(σ)

m(usτ1
(σ))

du√
(vsτ1 (σ))2 + 2µ(G(u)−G(usτ1 (σ)))

+

∫ usτ0
(σ)

m(usτ1
(σ))

du√
(vsτ1 (σ))2 + 2µ(G(u)−G(usτ1 (σ)))

,

`13 := 2

∫ usτ1
(σ)

m(usτ1
(σ))

du√
(vsτ1 (σ))2 + 2µ(G(u)−G(usτ1 (σ)))

.

We notice that 0 < `11,2 < `13 < +∞. Moreover, since m(usτ0 (σ)) = m(usτ1 (σ)) and
(vsτ0 (σ))2 − 2µG(usτ0 (σ)) = (vsτ1 (σ))2 − 2µG(usτ1 (σ)), we have that

`03 = `11,2.

Case 4. Let s ∈ (sτ1 , 1). In this case, we have one intersection point between Γ1

and the level line of (3.2) passing through (us(σ), vs(σ)), that is (x1(s), y1(s)) =
(us(σ),−vs(σ)). Therefore, we define only T1 as in (4.7), which is continuous and
can be equivalently written as

T1(s) = 2

∫ us(σ)

m(us(σ))

du√
(vs(σ))2 + 2µ(G(u)−G(us(σ)))

. (4.12)

By arguing as in Case 3, it is easy to prove that

lim
s→(sτ1 )+

T1(s) = `13
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and, using Proposition 2.6 (ii) and Proposition 3.2 (i), that

lim
s→1−

T1(s) =
2
√
µ

arctan

(√
λ tanh(

√
λσ)

√
µ

)
=: L1. (4.13)

We conclude the analysis of the case λ ∈ [λ∗,+∞) by investigating further
properties of the above time-maps Ti, with i = 1, 2, 3, which will be crucial in the
next section.

First, we prove that

lim
s→0+

T1(s) = L0 > L1 = lim
s→1−

T1(s). (4.14)

Precisely, from (4.9) and (4.13), we show that

λσ

µ
>

1
√
µ

arctan

(√
λ tanh(

√
λσ)

√
µ

)
, for all µ, λ, σ ∈ (0,+∞).

Accordingly, we consider the function η : (0,+∞)→ R of class C∞ defined as

η(x) = x arctan

(√
λ tanh(

√
λσ)

x

)
.

For all x ∈ (0,+∞) we have

η′(x) = arctan

(√
λ tanh(

√
λσ)

x

)
−
√
λ tanh(

√
λσ)x

λ tanh2(
√
λσ) + x2

,

η′′(x) = − 2(
√
λ tanh(

√
λσ))3

(λ tanh2(
√
λσ) + x2)2

.

From limx→+∞ η′(x) = 0 and η′′(x) < 0 for all x ∈ (0,+∞), we infer that η is
a strictly increasing function. Since limx→+∞ η(x) =

√
λ tanh(

√
λσ), in order to

conclude, we only need to prove that
√
λ tanh(

√
λσ) < λσ.

This is obvious from the fact that tanh(z) < z for all z > 0.

To conclude the case λ ∈ [λ∗,+∞), we extend the connection times Ti(s), i =
1, 2, 3, as follows. We set T1(0) = L0, T1(sτ0) = `01,2, T1(sτ1) = `11,2, and T1(1) = L1,
so that T1 is lower-semicontinuous in D1 := [0, sM0 ) ∪ (sM1 , 1]. Moreover, by setting
T2(sτ0) = `01,2, T2(sτ1) = `11,2, T3(sτ0) = `03, and T3(sτ1) = `13, we have that Ti is
continuous in Di := (0, sM0 ) ∪ (sM1 , sτ1 ], with i = 2, 3. In addition, we observe that

T1(s) ≤ T2(s) ≤ T3(s), for all s ∈ [0, 1] ∩D2, (4.15)

with strict inequalities for s 6= sτ0 and s 6= sτ1 .
At last, by exploiting the symmetry of the problem (cf. Remark 2.7) and (4.7),

we have that
Im
(
T2|(0,sτ0 )

)
= Im

(
T1|(sτ0 ,sM0 )

)
,

Im
(
T3|(0,sτ0 )

)
= Im

(
T1|(sM1 ,sτ1 )

)
,

Im
(
T3|(sτ0 ,sM0 )

)
= Im

(
T2|(sM1 ,sτ1 )

)
.

(4.16)
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4.2. The case λ ∈ (0, λ∗)

Let λ ∈ (0, λ∗) be fixed. The properties of Γ0 described in Corollary 2.2 and the
ones of Γ1 described in Corollary 2.5 ensure the existence of µ̃(λ) > 0 such that for
µ = µ̃(λ) the curveMµ is tangent to Γ0 and Γ1.

If µ ∈ (0, µ̃(λ)), then there are at least two intersections between Γ0 andMµ

in (0, 1) × R (as in the case λ ∈ [λ∗,+∞)). Accordingly, let sM0 , sM1 ∈ (0, 1) with
sM0 < sM1 be such that (4.2) holds. In principle, there could be more than two values
s ∈ (0, 1) giving intersections between Γ0 andMµ; if it is the case, we consider only
the closest to 0 and to 1, respectively. As a consequence, when µ ∈ (0, µ̃(λ)), the
situation is exactly that described in Section 4.1 (for λ ∈ [λ∗,+∞)) and represented
in Figures 4 and 5.

If µ = µ̃(λ), then sM0 = sM1 =: sM and the curve Γ0 is tangent to Mµ at
(usM(σ), vsM(σ)). The behavior of the time-maps differs from the one described in
Section 4.1 (for λ ∈ [λ∗,+∞)) since the gap between the two vertical asymptotes
s = sM0 and s = sM1 is dropped, thus producing a unique asymptote s = sM.

The difference between the cases λ ∈ (0, λ∗) and λ ∈ [λ∗,+∞) is evident when
µ > µ̃(λ), namely when there are no intersections between Γ0 ∪ Γ1 and Mµ in
(0, 1)× R. Recalling the definition of the function hµ : [0, 1]→ R given in (4.4) and
its sign properties, we deduce that hµ(s) < 0 for all s ∈ (0, 1] and, as before, s = 1
is a global minimum point (see Figure 7).

In general, since hµ could be strictly decreasing in [0, 1], for all s ∈ (0, 1), we
can only have one intersection between Γ1 and the level line of (3.2) passing through
(us(σ), vs(σ)), that is (us(σ),−vs(σ)). If that is the case, for all s ∈ (0, 1), we define
T1 as in (4.12), whose graph is depicted in Figure 6. As in Section 4.1, we have
(4.14).

0 1

L0

L1

s

T1(s)

Figure 6. For λ ∈ (0, λ∗) and µ > µ̃(λ), qualitative graph of T1, which
is the time necessary to connect Γ0 to Γ1, as a function of the initial data
u(0) = s of (2.5).

We enhance the qualitative description of the case µ > µ̃(λ) dealing with µ
sufficiently close to µ̃(λ). Preliminarily, we observe that if µ = µ̃(λ) the function
hµ vanishes for s = 0 and for s = sM0 = sM1 = sM, and so hµ|[0,sM] has a global
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minimum point. Therefore, by continuity, if we slightly increase µ, hµ has a local
maximum point sω1 ∈ (0, 1) corresponding to a small perturbation of the point sM,
and the function hµ|[0,sω1 ] has a global minimum point s = sτ0 . As in Section 4.1, we
investigate the case in which sτ0 is the unique local minimum of hµ in (0, 1) (and so
sω1 is the unique local maximum point of hµ). More complicated situations can be
investigated by adapting the analysis here performed. We call sω0 the point in [0, sω1 ]
such that hµ(sω0 ) = hµ(sω1 ). Since s = 1 is a global minimum point of hµ, we define
sτ1 the point in [sM1 , 1] such that hµ(sτ0) = hµ(sτ1). We stress that

0 < sω0 < sτ0 < sω1 < sτ1 < 1

and also that the level line Hµ(u, v) = Hµ(us(σ), vs(σ)) is tangent to the curve Γ0 in
(usτ0 (σ), vsτ0 (σ)) and in (usω1 (σ), vsω1 (σ)). See Figure 7 for a graphical representation.

0 1

sω0 sτ0 sω1 sτ1
s

hµ(s)

0 1
Γ0

Γ1

Mµ

P (sτ0 )

P (sτ1 )

P (sω0 )

P (sω1 )

u

v

Figure 7. For λ ∈ (0, λ∗), qualitative representations of the graph of the
function hµ defined in (4.4) (left) and of Γ0 (blue), Γ1 (violet),Mµ (pink)
along with some level lines of (3.2) (gray) in the (u, v)-plane (right). We
set P (s) = (us(σ), vs(σ)).

We are in position to study the connection times in the case µ > µ̃(λ) with µ
sufficiently close to µ̃(λ). If s ∈ (0, sω0 )∪ (sτ1 , 1), we can define only the time T1(s) to
reach Γ1 from (us(σ), vs(σ)), exactly as in (4.12). It follows that T1 satisfies (4.14)
together with

lim
s→(sω0 )−

T1(s) =: κ0 ∈ (0,+∞), lim
s→(sτ1 )+

T1(s) =: κ1 ∈ (0,+∞).

If s ∈ (sω0 , s
τ
0) ∪ (sτ0 , s

ω
1 ) ∪ (sω1 , s

τ
1), we can define the times Ti(s), for i = 1, 2, 3,

exactly as in Cases 1, 2, 3 discussed in Section 4.1 (cf., (4.7)). We stress that they
are bounded and some properties of symmetry, analogous to the ones in Section 4.1,
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hold. The following properties can be proved straightforwardly

lim
s→0+

T1(s) = L0, lim
s→1−

T1(s) = L1,

lim
s→(sω0 )+

T1(s) = κ0, lim
s→(sω0 )+

T2(s) = lim
s→(sω0 )+

T3(s) =: κ2,

lim
s→sτ0

T1(s) = lim
s→sτ0

T2(s) =: κ3, lim
s→sτ0

T3(s) = κ2, (4.17)

lim
s→sω1

T1(s) = κ2, lim
s→sω1

T2(s) = lim
s→sω1

T3(s) =: κ4,

lim
s→(sτ1 )−

T1(s) = lim
s→(sτ1 )−

T2(s) = κ2, lim
s→(sτ1 )−

T3(s) = κ1,

where κi ∈ (0,+∞). Reasoning as in Section 4.1, we can deduce that κ2 < κ1. In
Figure 8, we summarize the behavior of the time-maps Ti, with i = 1, 2, 3, ana-
lyzed above. In particular, the case µ ∈ (µ̃(λ),+∞) with µ sufficiently close to µ̃(λ)
provides the presence of a loop in addition to the curve in Figure 5.

Also in the case λ ∈ (0, λ∗), we set T1(0) = L0, T1(sτ0) = κ3, T1(sτ1) = κ2, and
T1(1) = L1, so that T1 is lower-semicontinuous in D1 := [0, 1]. Moreover, we extend
by continuity the connection times Ti(s), i = 2, 3, according to (4.17) and we define
their domains Di := [sω0 , s

τ
1 ], i = 2, 3. Therefore, (4.15) holds true also in this case.

In addition, recalling that κ2 < κ1, we observe that, for every i = 1, 2, 3, Ti (Di) is
an interval in (0,+∞). From (4.17), we can easily infer that

⋃
i=1,2,3 Ti(Di) is an

interval too.

0 1sω0 sτ0 sω1 sτ1

L0

L1

κ0

κ3

κ1

κ4

κ2

s

Ti(s)

Figure 8. For λ ∈ (0, λ∗) and µ > µ̃(λ), qualitative graphs of Ti, with
i = 1, 2, 3, which are the times necessary to connect Γ0 to Γ1, as functions
of the initial data u(0) = s of (2.5): T1 (green), T2 (blue), and T3 (pink).
The existence of the loop is ensured only for µ near µ̃(λ).
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5. Proofs of Theorem 1.1 and Theorem 1.2
In this section, we prove Theorems 1.1 and 1.2. For the former, the strategy of the
proof is to show that no connection from Γ0 to Γ1 along the level lines of (3.2) is
possible in time 1− 2σ, which is the length of the interval (σ, 1− σ). For the latter,
instead, we prove that the connection times Ti, i = 1, 2, 3, defined in Section 4 allow
us to connect Γ0 to Γ1 in several ways. For convenience, we point out explicitly the
dependence on µ of the connection times and of all related quantities.

Before passing to the proofs, we need to introduce some “barriers”, B− and
B+, in the (u, v)-plane which will control the connection times (see Figure 9).

0 1x∗

Γ0

Γ1

B+

B−

Mµ

u

v

Figure 9. For λ ∈ (0, λ∗), qualitative representation in the (u, v)-plane
of the curves Γ0 and Γ1, the manifoldMµ, and the curves B− and B+.

Construction of “interior barriers” for all λ > 0. Let λ > 0 be fixed. According
to the behavior of Γ0 near (0, 0) and (1, 0) described in Proposition 2.3, we fix
k+ = k+(λ) > 0 sufficiently small such that the curve

B+ = B+(λ) :=
{

(x,−k+(λ) min{x2, 1− x}) : x ∈ [0, 1]
}
,

lies between the curve Γ0 = Γ0(λ) and the segment [0, 1]× {0}. Observe that B+ is
the graph of the maximum function between the parabola {(x,−k+x

2) : x ∈ [0, 1]}
and the line {(x,−k+(1 − x)) : x ∈ [0, 1]} which intersect for x = x∗ :=

√
5−1
2 . In

particular, B+ connects the points (0, 0) and (1, 0) in the (u, v)-plane.
Thanks to (3.3), for sufficiently small µ the curve Mµ intersects B+ in two

points in (0, 1)× (−∞, 0), whose abscissas are denoted by xM0 = xM0 (µ) and xM1 =
xM1 (µ), in such a way that xM0 < x∗ < xM1 .

Let us define now, for all x ∈ (0, xM0 ) ∪ (xM1 , 1), the time T+(x, µ) to connect
the point (x,−k+ min{x2, 1 − x}) ∈ B+ to (x, k+ min{x2, 1 − x}), which is the
symmetric point with respect to the u-axis, along the level lines of (3.2). Thanks to
Propositions 3.1 and 3.2 we have that T+(·, µ) is strictly increasing in (0, xM0 ) and
strictly decreasing in (xM1 , 1). Moreover, we extend T+(x, µ) by continuity at x = 0
and x = 1. Now, by reasoning as in the proof of (4.14), one can prove that

min
x∈[0,xM0 )∪(xM1 ,1]

T+(x, µ) = T+(1, µ) =
1
√
µ

arctan
k+√
µ
.
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Since the right-hand side converges to +∞ as µ→ 0+, this implies that there exists
µ+ = µ+(λ) > 0 such that

T+(x, µ) > 1− 2σ, for all µ ∈ (0, µ+) and x ∈ [0, xM0 (µ)) ∪ (xM1 (µ), 1]. (5.1)

Next, we compare the connection times from Γ0 to Γ1 introduced in Section 4 with
T+. We observe that, for sufficiently small µ, such connection times look like in
Figure 5. Moreover, for all s ∈ (0, sM0 (µ)) ∪ (sM1 (µ), 1), we denote by ζs the small-
est abscissa of the intersections of B+ with the level line of (3.2) passing through
(us(σ), vs(σ)). Since ζs < us(σ), we have

T1(s, µ) > T+(ζs, µ), for all s ∈ (0, sM0 (µ)) ∪ (sM1 (µ), 1). (5.2)

Finally, by combining (5.1), (5.2), and (4.15), we conclude that for all λ > 0, there
exists µ+ = µ+(λ) > 0 such that

Ti(s, µ) > 1− 2σ, for all µ ∈ (0, µ+) and s ∈ Di(µ), (5.3)

for all i = 1, 2, 3, where we recall that Di(µ) is the domain of Ti.

Construction of “exterior barriers” for λ ∈ (0, λ∗). According to the behavior of Γ0

near (0, 0) and (1, 0) described in Proposition 2.3, we fix k− = k−(λ) > 0 sufficiently
large such that Γ0 = Γ0(λ) lies between the curve

B− = B−(λ) :=
{

(x,−k−(λ) min{x2, 1− x}) : x ∈ [0, 1]
}

and the segment [0, 1] × {0}. Observe that, similarly as before, B− is the graph of
the maximum function between the parabola {(x,−k−x2) : x ∈ [0, 1]} and the line
{(x,−k−(1− x)) : x ∈ [0, 1]} which intersect at

(x∗, y∗) :=

(√
5− 1

2
,−k−

3−
√

5

2

)
.

In particular, B− connects the points (0, 0) and (1, 0) in the (u, v)-plane (see Fig-
ure 9).

Recalling the definition of Mµ given in (3.3) and property (4.1), by Proposi-
tion 2.3, for every µ > 0 there exists a neighborhood U0(µ) = [0, x0(µ))×(−ε(µ), ε(µ))
of (0, 0) such that B− ∩ U0(µ) lies in the region between Mµ and [0, 1] × {0}. We
fix µ̂ > 0 and we stress that the neighborhood U0(µ̂) satisfies the above property for
every µ ≥ µ̂. At this stage, we fix x0(µ̂) (which does not depend on µ) and for every
µ ≥ µ̂ and every u ∈ [x0(µ̂), 1], the corresponding points (u, vµ) ∈Mµ satisfy

|vµ| =
√

2µG(u)→ +∞, as µ→ +∞.

From this discussion we deduce the existence of µ̄(λ) > 0 such that for every µ > µ̄(λ)
the curvesMµ and B− do not intersect in (0, 1]×R. As a consequence, for the same
range of µ,Mµ does not intersect Γ0 and Γ1 in (0, 1]× R as well.

We consider such a configuration, and define, for all x ∈ (0, 1), the time
T−(x, µ) to connect the point (x,−k−min{x2, 1−x}) ∈ B− to the symmetric point
(x, k−min{x2, 1 − x}) along the level lines of (3.2). Thanks to Propositions 3.1
and 3.2, we have that T−(·, µ) is strictly increasing in (0, x∗] and strictly decreasing
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in [x∗, 1). Moreover, we also extend T− by continuity at x = 0 and x = 1. Thus, for
all x ∈ [0, 1],

T−(x, µ) ≤ T−(x∗, µ) = 2

∫ x∗

m(x∗)

du√
(y∗)2 + 2µ(G(u)−G(x∗))

.

We observe that this integral converges to 0 as µ → +∞. Indeed, the integrand
converges to 0 and, using the conservation of the energy Hµ (cf., (3.2)), it is easy to
see that the level line passing through (x∗, y∗) approaches a vertical line as µ→ +∞,
thus m(x∗)→ x∗ as µ→ +∞. We conclude that

lim
µ→+∞

T−(·, µ) = 0 uniformly in [0, 1]. (5.4)

Then, we define the maximal connection time from Γ0 to Γ1 (we refer to the
constructions and notations of Section 4.2). If T1 is the unique connection time
between Γ0 and Γ1 (cf., Figure 6), we set

Tmax(s, µ) := T1(s, µ), for all s ∈ [0, 1].

Otherwise, if more connection times are present, as in Figure 8, we set

Tmax(s, µ) :=

{
T1(s, µ), if s ∈ [0, sω0 ) ∪ (sτ1 , 1],
T3(s, µ), if s ∈ [sω0 , s

τ
1 ].

We observe that, in both cases, Tmax(·, µ) is upper semi-continuous in [0, 1] and,
moreover,

Ti(s, µ) ≤ Tmax(s, µ), for all s ∈ [0, 1] ∩Di(µ). (5.5)

for all i = 1, 2, 3.
Finally, we compare Tmax and T−: for all s ∈ (0, 1), we denote by ζs the

largest abscissa of the intersections of B− with the level line of (3.2) passing through
(us(σ), vs(σ)). Since ζs > us(σ), we have

Tmax(s, µ) < T−(ζs, µ), for all s ∈ (0, 1). (5.6)

By combining (5.4), (5.5), and (5.6), we conclude that, for all λ ∈ (0, λ∗), there
exists µ− = µ−(λ) > 0 such that

Ti(s, µ) < 1− 2σ, for all µ > µ− and s ∈ [0, 1] ∩Di(µ), (5.7)

for all i = 1, 2, 3.
Moreover, we can adapt the previous arguments to the case λ ∈ [λ∗,+∞) as

follows. First of all, by recalling the quantities s0 and s1 introduced in Proposition 2.1
(where for λ = λ∗, s0 = s1 = s∗), we have

lim
µ→+∞

sM0 (µ) = s0, lim
µ→+∞

sM1 (µ) = s1,

lim
µ→+∞

sτ0(µ) =: s̄0, lim
µ→+∞

sτ1(µ) =: s̄1,
(5.8)

with s̄0 ∈ (0, s0) and s̄1 ∈ (s1, 1). Then, we consider the barrier B− as above, and,
by taking k− arbitrarily large, its intersection points with Γ0 can be made arbitrarily
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close to (−ξ0, 0) and (−ξ1, 0) (cf., the notation introduced in Corollary 2.2). With
these constructions, it is possible to show that, for λ ∈ [λ∗,+∞),

lim
µ→+∞

Ti(·, µ) = 0 locally uniformly in Di,∞, (5.9)

for all i = 1, 2, 3, where D1,∞ := [0, s0)∪(s1, 1] and D2,∞ = D3,∞ := (0, s0)∪(s1, s̄1].
Notice that Di,∞ are the limiting domains of Ti(·, µ) as µ→ +∞.

We are now ready to give the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. (i) For all λ > 0, we claim that

µ∗0(λ) := min

{
µ > 0: min

s
T1(s, µ) = 1− 2σ

}
is well-defined and positive. Indeed, the set {µ > 0: mins T1(s, µ) = 1 − 2σ} is
nonempty, bounded, bounded away from 0 and closed thanks to (5.3), (5.7), (5.9)
and the continuity of µ 7→ T1(s, µ) (notice that all the quantities in (4.7) depend
continuously on µ). Then, we show that

min
s
T1(s, µ) > 1− 2σ, for all µ ∈ (0, µ∗0(λ)), (5.10)

which, together with (4.15) implies that problem (1.1) has no solution, since no
connection from Γ0 to Γ1 is possible in time 1−2σ. To show this, let µ̄ ∈ (0, µ∗0(λ)) be
fixed and assume by contradiction that mins T1(s, µ̄) ≤ 1− 2σ. The equality cannot
hold, because it would contradict the minimality of µ∗0(λ). If mins T1(s, µ̄) < 1− 2σ,
instead, thanks to (5.3) and the continuity in µ, there would be a value of µ smaller
than µ̄ (and thus smaller than µ∗0(λ)) for which mins T1(s, µ) = 1− 2σ, against the
minimality of µ∗0(λ) again.
(ii) For all λ ∈ (0, λ∗), we claim that

µ∗∗0 (λ) := max

{
µ > 0: max

s
Tmax(s, µ) = 1− 2σ

}
is well-defined, finite and satisfies µ∗∗0 (λ) > µ∗0(λ). The existence follows as above,
while (5.7) gives that µ∗∗0 (λ) ≤ µ−(λ) < +∞. If we assume by contradiction that
µ∗∗0 (λ) = µ∗0(λ), then Tmax (s, µ∗0(λ)) = T1 (s, µ∗0(λ)) = 1− 2σ for all s ∈ [0, 1], which
contradicts (4.14). If, instead, it was µ∗∗0 (λ) < µ∗0(λ), by (5.10) we would have

1− 2σ < min
s
T1(s, µ∗∗0 (λ)) ≤ max

s
Tmax(s, µ∗∗0 (λ)) = 1− 2σ,

again a contradiction. Now, we claim that

max
s
Tmax(s, µ) < 1− 2σ, for all µ > µ∗∗0 (λ),

which, together with (5.5), implies that problem (1.1) has no solution, since no
connection from Γ0 to Γ1 is possible in time 1 − 2σ. To show this, let µ̄ > µ∗∗0 (λ)
and assume that maxs Tmax(s, µ̄) ≥ 1− 2σ. Equality cannot hold, because it would
contradict the maximality of µ∗∗0 (λ). If, instead, maxs Tmax(s, µ̄) > 1−2σ, thanks to
(5.7) and the continuity in µ, there would be a value of µ greater than µ̄ (and thus
greater than µ∗∗0 (λ)) for which maxs Tmax(s, µ) = 1− 2σ, against the maximality of
µ∗∗0 (λ) again. �
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Proof of Theorem 1.2. We start by setting, for all λ > 0,

µ∗1(λ) := max

{
µ > 0: min

s
T1(s, µ) = 1− 2σ

}
, (5.11)

which immediately gives µ∗0(λ) ≤ µ∗1(λ), and

µ∗2(λ) :=
2λσ

1− 2σ
. (5.12)

We observe that, with such a definition, (4.9) guarantees that

L0 = L0(µ)


< 1− 2σ, if µ > µ∗2(λ),
= 1− 2σ, if µ = µ∗2(λ),
> 1− 2σ, if µ < µ∗2(λ).

(5.13)

In addition, we show that µ∗1(λ) < µ∗2(λ) for all λ > 0. Indeed, if by contradiction
µ∗1(λ) ≥ µ∗2(λ) for some λ > 0, then, (4.14) and (5.13) would give L1(µ∗1(λ)) <
L0(µ∗1(λ)) ≤ 1 − 2σ. Thus, T1(s, µ∗1(λ)) < 1 − 2σ for s ∼ 1, against the fact that
mins T1(s, µ∗1(λ)) = 1− 2σ.

Moreover, for all λ ∈ (0, λ∗), we set

µ∗∗2 (λ) := min

{
µ > 0: max

s
Tmax(s, µ) = 1− 2σ

}
, (5.14)

which immediately gives µ∗∗2 (λ) ≤ µ∗∗0 (λ), and we show that µ∗2(λ) < µ∗∗2 (λ). Indeed,
if by contradiction µ∗2(λ) ≥ µ∗∗2 (λ) for some λ ∈ (0, λ∗), then (5.13) would give
L0(µ∗∗2 (λ)) ≥ 1 − 2σ. Thus, (B.1) implies Tmax(s, µ∗∗2 (λ)) ≥ T1(s, µ∗∗2 (λ)) > 1 − 2σ
for s ∼ 0, against the fact that maxs Tmax(s, µ∗∗2 (λ)) = 1− 2σ.

Once we have introduced the quantities above, we prove the statements of this
theorem.

First, dealing with case (i), we consider a fixed λ ∈ (0, λ∗).
(i.a) We prove that

min
s
T1(s, µ) < 1− 2σ, for all µ > µ∗1(λ). (5.15)

Fix µ̄ > µ∗1(λ) and assume by contradiction that mins T1(s, µ̄) > 1 − 2σ (equality
is excluded by the maximality of µ∗1(λ)). Thanks to (5.7) and the continuity in µ,
there exists µ > µ̄ (thus µ > µ∗1(λ)) such that mins T1(s, µ) = 1 − 2σ, against the
maximality of µ∗1(λ). Thus (5.15) is proved. Now, using (5.3), a similar contradiction
argument allows us to show that

max
s∈[0,1]

Tmax(s, µ) > 1− 2σ, for all µ < µ∗∗2 (λ). (5.16)

By combining (5.15), (5.16), and since, in accord with Section 4.2,⋃
i=1,2,3

Ti (Di(µ), µ) =
[
min
s
T1(s, µ),max

s
Tmax(s, µ)

]
. (5.17)

we infer, for all µ ∈ (µ∗1(λ), µ∗∗2 (λ)), the existence of at least one value ξµ1 ∈ (0, 1)
such that Ti(ξ

µ
1 , µ) = 1−2σ for some i ∈ {1, 2, 3}. Thus, problem (1.1) has a solution

u such that u(0) = s ∈ {ξµ1 }.
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(i.b) Fix µ ∈ (µ∗2, µ
∗∗
2 ). Since µ > µ∗2, by (4.14) and (5.13), there exists s̄ = s̄(µ) > 0,

with s̄ ∼ 0, such that

T1(s, µ) < 1− 2σ, for all s ∈ (0, s̄) ∪ (1− s̄, 1). (5.18)

This, together with (5.16) and (5.17), guarantees the existence of at least two values
ξµ2,1, ξ

µ
2,2 such that

0 < ξµ2,1 < ξµ2,2 < 1,

Ti(ξ
µ
2,1, µ) = Tj(ξ

µ
2,2, µ) = 1− 2σ, for some i, j ∈ {1, 2, 3}.

(5.19)

As a consequence, for µ ∈ (µ∗2(λ), µ∗∗2 (λ)), problem (1.1) has two solutions u such
that u(0) = s ∈ {ξµ2,1, ξ

µ
2,2}. The proof of (i.b) is complete.

Next, dealing with case (ii), we consider a fixed λ ∈ [λ∗,+∞).
(ii.a) We observe that (5.15) can be obtained in this case as above using (5.9).
Moreover, since

lim
s→(sM0 )−

T1(s, µ) = lim
s→(sM1 )+

T1(s, µ) = +∞ and `11,2(µ) < `13(µ) (5.20)

(cf., Figure 5), by continuity there exists, for all µ > µ∗1(λ), at least one value
ξµ1 ∈ (0, sM0 (µ))∪ (sM1 (µ), 1) such that T1(ξµ1 , µ) = 1− 2σ, and so problem (1.1) has
a solution u such that u(0) = s ∈ {ξµ1 }.
(ii.b) Take any µ > µ∗2. Then, (5.18) holds as above and, thanks to (5.20), we obtain
the existence of at least two values ξµ2,1, ξ

µ
2,2 such that

0 < ξµ2,1 < sM0 (µ) ≤ sM1 (µ) < ξµ2,2 < 1 and T1(ξµ2,j , µ) = 1− 2σ, j = 1, 2,

which completes the proof in this case.
(ii.c) Set

µ∗4(λ) := max
{
µ∗2(λ), max

{
µ > 0: `01,2(µ) = 1− 2σ

}}
, (5.21)

which is well-defined, finite, and obviously satisfies µ∗2(λ) ≤ µ∗4(λ). Observe that the
finiteness is a consequence of

lim
µ→+∞

`01,2(µ) = 0. (5.22)

This follows from (5.9) and the fact that sτ0(µ) is bounded away from 0 and s0 as
µ→ +∞, since the level lines of (3.2) approach vertical lines as µ→ +∞, thus sτ0(µ)
converges, as µ→ +∞, to the value of s for which Γ0 has a vertical tangent in the
(u, v)-plane. Moreover, we have

min
s∈(0,sM0 )

T2(s, µ) ≤ `01,2(µ) < 1− 2σ and L1(µ) < L0(µ) < 1− 2σ, for all µ > µ∗4.

Indeed, the second relation follows since µ∗4 ≥ µ∗2, while the first one from (5.3)
and (5.22). Then, recalling that

lim
s→0+

T2(s, µ) = lim
s→(sM0 )−

T2(s, µ) = +∞,

from the continuity of T2(·, µ) in (0, sM0 ), we obtain, for all µ > µ∗4, the existence of
two values ξµ4,1, ξ

µ
4,2 such that

0 < ξµ4,1 < sτ0 < ξµ4,2 < sM0 and T2(ξµ4,1, µ) = T2(ξµ4,2, µ) = 1− 2σ.
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Moreover, since µ∗4(λ) ≥ µ∗2(λ), arguing as in the proof of (ii.b) and using the facts
that T1(ξµ4,2, µ) < 1 − 2σ and lims→(sM0 )− T1(s, µ) = +∞, we have the existence of
one value ξµ4,3 such that

0 < ξµ4,1 < sτ0 < ξµ4,2 < ξµ4,3 < sM0 and T1(ξµ4,3, µ) = 1− 2σ. (5.23)

Next, as in the proof of (ii.a), i.e., using the facts that T1

(
(sM1 , 1], µ

)
⊇ [L1,+∞)

and L1 < 1− 2σ we have the existence of one value ξµ4,4 such that

sM1 < ξµ4,4 < 1 and T1(ξµ4,4, µ) = 1− 2σ. (5.24)

As a consequence, for µ > µ∗4(λ), problem (1.1) has four solutions u such that
u(0) = s ∈ {ξµ4,1, ξ

µ
4,2, ξ

µ
4,3, ξ

µ
4,4}. We notice that the values ξµ4,3, ξ

µ
4,4 can be taken to

coincide with ξµ2,1, ξ
µ
2,2 defined in the proof of (ii.b), respectively. The proof of (ii.c)

is thus complete.
(ii.d) Set

µ∗8(λ) := max
{
µ∗2(λ), max

{
µ > 0: `03(µ) = 1− 2σ

}}
, (5.25)

which is well-defined, finite, and satisfies µ∗4(λ) ≤ µ∗8(λ) since `01,2(µ) < `03(µ). Ob-
serve that the finiteness is a consequence of

lim
µ→+∞

`03(µ) = 0,

which can be proved by reasoning as for (5.22).
For each µ > µ∗8(λ), we can infer that

min
s∈(0,sM0 )

T3(s, µ) ≤ `03(µ) < 1− 2σ,

min
s∈(sM1 ,sτ1 ]

T1(s, µ) ≤ min
s∈(sM1 ,sτ1 ]

T2(s, µ) ≤ `11,2(µ) = `03(µ) < 1− 2σ.

Recalling that

lim
s→0+

T3(s, µ) = lim
s→(sM0 )−

T3(s, µ) = lim
s→(sM1 )+

T1(s, µ) = lim
s→(sM1 )+

T2(s, µ) = +∞,

from the continuity of T3(·, µ) in (0, sM0 ), of T1(·, µ) in (sM1 , sτ1 ], and of T2(·, µ) in
(sM1 , sτ1 ], we immediately obtain that there exist four values ξµ8,2, ξ

µ
8,3, ξ

µ
8,6, ξ

µ
8,7 such

that

0 < ξµ8,2 < sτ0 < ξµ8,3 < sM0 and T3(ξµ8,2, µ) = T3(ξµ8,3, µ) = 1− 2σ,

sM1 < ξµ8,6 < ξµ8,7 < sτ1 and T1(ξµ8,6, µ) = T2(ξµ8,7, µ) = 1− 2σ.

Moreover, since
T2(ξµ8,2, µ) < 1− 2σ, T1(ξµ8,3, µ) < T2(ξµ8,3, µ) < 1− 2σ < T3(ξµ8,7, µ)

lim
s→0+

T2(s, µ) = lim
s→(sτ0 )−

T1(s, µ) = +∞, L1(µ) < L0(µ) < 1− 2σ,

arguing as in the proof of (ii.c), we have, for all µ > µ∗8, the existence of four values
ξµ8,1, ξ

µ
8,4, ξ

µ
8,5, ξ

µ
8,8 satisfying

0 < ξµ8,1 < ξµ8,2 < sτ0 < ξµ8,3 < ξµ8,4 < ξµ8,5 < sM0 ≤ sM1 < ξµ8,6 < ξµ8,7 < ξµ8,8 < 1,

T2(ξ8,1, µ) = T2(ξµ8,4, µ) = T1(ξµ8,5, µ) = Ti(ξ
µ
8,8, µ) = 1− 2σ,



34 G. Feltrin, E. Sovrano and A. Tellini

where i = 3, provided ξµ8,8 ∈ (sM1 , sτ1 ], and i = 1, provided ξµ8,8 ∈ (sτ1 , 1]. In particular,
they can be taken to coincide with ξµ4,1, ξ

µ
4,2, ξ

µ
4,3, ξ

µ
4,4 introduced in the proof of (ii.c),

respectively. As a consequence, for µ > µ∗8(λ), problem (1.1) has eight solutions u
such that u(0) = s ∈ {ξµ8,1, ξ

µ
8,2, ξ

µ
8,3, ξ

µ
8,4, ξ

µ
8,5, ξ

µ
8,6, ξ

µ
8,7, ξ

µ
8,8}. The proof of (ii.d) is

thus complete. �

Remark 5.1 (Conjecture). We conjecture that the values µ∗1(λ) and µ∗∗2 (λ) in The-
orems 1.1 and 1.2 coincide with µ∗0(λ) and µ∗∗0 (λ), respectively. To obtain such a
result, it would be sufficient, for example, to prove some properties of monotonic-
ity with respect to µ for the connection times Ti, with i = 1, 2, 3, introduced and
analyzed in Section 4. C

6. Bifurcation diagrams in the (µ, u(0))-plane
In this section, we provide a description of all possible bifurcation diagrams con-
cerning the number of solutions of problem (1.1). We thus plot, for every fixed
λ ∈ (0,+∞), the initial data u(0) = s in (2.21), that identifies a solution of (1.1),
against the main bifurcation parameter µ ∈ (0,+∞). To this purpose, we exploit
the behavior of the connection times Ti defined in Section 4, and so we divide the
discussion into two parts corresponding to the cases λ ∈ [λ∗,+∞) and λ ∈ (0, λ∗).
Overall, we will show that three different topological diagrams arise.

6.1. The case λ ∈ [λ∗,+∞)

Let λ ∈ [λ∗,+∞) be fixed. We aim to show that the minimal bifurcation diagram
to problem (1.1) with respect to µ ∈ (0,+∞) behaves as in Figure 10. We therefore
introduce the continuous functions

f l1,2(s, µ) :=

{
T1(s, µ), if s ∈ [0, sτ0(µ)],
T2(s, µ), if s ∈ [sτ0(µ), sM0 (µ)),

f l2,1(s, µ) :=

{
T2(s, µ), if s ∈ (0, sτ0(µ)],
T1(s, µ), if s ∈ [sτ0(µ), sM0 (µ)),

f l3,3(s, µ) := T3(s, µ), if s ∈ (0, sM0 (µ)),

fr1 (s, µ) := T1(s, µ), if s ∈ (sM1 (µ), sτ1(µ)),

fr2 (s, µ) := T2(s, µ), if s ∈ (sM1 (µ), sτ1(µ)],

fr3,1(s, µ) :=

{
T3(s, µ), if s ∈ (sM1 (µ), sτ1(µ)],
T1(s, µ), if s ∈ (sτ1(µ), 1],

(6.1)

(see Figure 5). Throughout this section, we also assume that:
the functions defined in (6.1) have at most one local extremum point in
the s-variable.

This assumption is suggested by numerical computations of the graphs of the con-
nection times Ti, i = 1, 2, 3. In particular, it implies that the functions f l1,2, fr2 , and
fr3,1 are strictly monotone in s. As we shall see, they also lead to a bifurcation dia-
gram made of eight unbounded continuous branches bi(µ), with i = 1, . . . , 8. If these
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additional assumptions for the functions in (6.1) are dropped, there may be more
turning points in the bifurcation diagrams compared to the minimal configuration
we are going to discuss.

By exploiting the symmetry properties in (4.16), under this additional hypoth-
esis we also deduce that sτ0(µ) is the critical point of f l2,1(·, µ) for all µ > 0. By
denoting the critical points of f l3,3(·, µ) and fr1 (·, µ) through s∗0(µ) and s∗1(µ), respec-
tively, thanks to (4.16), we obtain that 0 < s∗0(µ) ≤ sτ0(µ) (by the strict monotonicity
of fr2 (·, µ)), sM1 (µ) < s∗1(µ) ≤ sτ1(µ), and f l3,3(s∗0(µ), µ) = fr1 (s∗1(µ), µ). Next, let us
take µ∗1 = µ∗1(λ), µ∗2 = µ∗2(λ), and µ∗4 = µ∗4(λ) as the values defined in (5.11), (5.12),
and (5.21), respectively. We also define µ∗8 = µ∗8(λ) similarly as in (5.25) where `03(µ)
is replaced by f l3,3(s∗0(µ), µ).

The additional assumptions considered here allow us to improve the results in
Theorem 1.2 by proving in a similar way that 0 < µ∗1 < µ∗2 < µ∗4 < µ∗8 and

• for every µ > µ∗1, there is exactly one value ξµ1 ∈ (0, 1) such that fr3,1(ξµ1 , µ) =
1− 2σ;
• for every µ > µ∗2, there are exactly two values ξµ2,i ∈ (0, 1), i = 1, 2, ordered as

in (5.19), and such that f l1,2(ξµ2,1, µ) = fr3,1(ξµ2,2, µ) = 1− 2σ with ξµ2,2 = ξµ1 ;
• for every µ > µ∗4, there are exactly four values ξµ4,i ∈ (0, 1), i = 1, . . . , 4, ordered

as in (5.23)-(5.24), and such that f l2,1(ξµ4,1, µ) = f l1,2(ξµ4,2, µ) = f l2,1(ξµ4,3, µ) =

fr3,1(ξµ4,4, µ) = 1− 2σ with ξµ4,2 = ξµ2,1, and ξ
µ
4,4 = ξµ2,2;

• for every µ > µ∗8, there are exactly eight values ξµ8,i ∈ (0, 1), i = 1, . . . , 8, with
0 < ξµ8,1 < ξµ8,2 < s∗0(µ) < ξµ8,3 < ξµ8,4 < ξµ8,5 < sM0 (µ) ≤ sM1 (µ) < ξµ8,6 < ξµ8,7 <

ξµ8,8 < 1, such that f l2,1(ξµ8,1, µ) = f l3,3(ξµ8,2, µ) = f l3,3(ξµ8,3, µ) = f l1,2(ξµ8,4, µ) =

f l2,1(ξµ8,5, µ) = fr1 (ξµ8,6, µ) = fr2 (ξµ8,7, µ) = fr3,1(ξµ8,8, µ) = 1− 2σ, and ξµ8,1 = ξµ4,1,
ξµ8,4 = ξµ4,2, ξ

µ
8,5 = ξµ4,3, ξ

µ
8,8 = ξµ4,4.

Taking into account the solutions ξµi,j ∈ (0, 1), with i ∈ {1, 2, 4, 8} and j ∈
{1, . . . , i}, we can univocally determine the solutions of (1.1) as µ varies. Hence, we
define the branches bi(µ), for i = 1, . . . , 8, of the bifurcation diagram through the
following functions:

b1(µ) :=

{
sτ0(µ∗4), if µ = µ∗4,
ξµ4,1, if µ ∈ (µ∗4,+∞),

b2(µ) :=

{
s∗0(µ∗8), if µ = µ∗8,
ξµ8,2, if µ ∈ (µ∗8,+∞),

b3(µ) :=

{
s∗0(µ∗8), if µ = µ∗8,
ξµ8,3, if µ ∈ (µ∗8,+∞),

b4(µ) :=

{
0, if µ = µ∗2,
ξµ2,1, if µ ∈ (µ∗2,+∞),

b5(µ) :=

{
sτ0(µ∗4), if µ = µ∗4,
ξµ4,3, if µ ∈ (µ∗4,+∞),

b6(µ) :=

{
s∗1(µ∗8), if µ = µ∗8,
ξµ8,6, if µ ∈ (µ∗8,+∞),

b7(µ) :=

{
s∗1(µ∗8), if µ = µ∗8,
ξµ8,7, if µ ∈ (µ∗8,+∞),

b8(µ) :=

{
1, if µ = µ∗1,
ξµ1 , if µ ∈ (µ∗1,+∞).
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Thanks to the continuity of the functions in (6.1), we have that

lim
µ→(µ∗1)+

ξµ1 = 1, lim
µ→(µ∗2)+

ξµ2,1 = 0,

lim
µ→µ∗4

ξµ2,1 = lim
µ→(µ∗4)+

ξµ4,1 = lim
µ→(µ∗4)+

ξµ4,3 = sτ0(µ∗4),

lim
µ→(µ∗8)+

ξµ8,2 = lim
µ→(µ∗8)+

ξµ8,3 = s∗0(µ∗8),

lim
µ→(µ∗8)+

ξµ8,6 = lim
µ→(µ∗8)+

ξµ8,7 = s∗1(µ∗8),

and so the branches bi(µ), for i = 1, . . . , 8, are continuous functions in their domains.
We now investigate the behavior of bi(µ) as µ → +∞. To this purpose, by

recalling (5.8) and (5.9), we deduce that limµ→+∞ ξµ8,i ∈ {0, s0, s1} for i = 1, . . . , 8.
Moreover, from the order of the points ξµ8,i, we obtain

lim
µ→+∞

ξµ8,1 = lim
µ→+∞

ξµ8,2 = 0,

lim
µ→+∞

ξµ8,3 = lim
µ→+∞

ξµ8,4 = lim
µ→+∞

ξµ8,5 = s0,

lim
µ→+∞

ξµ8,6 = lim
µ→+∞

ξµ8,7 = lim
µ→+∞

ξµ8,8 = s1.

Concerning the above limits, we clarify that for ξµ8,3 ∈ [s∗0(µ), sM0 (µ)) since the other
ones follow straightforwardly. If by contradiction we suppose that lim infµ→+∞ ξµ8,3 =:
ŝ < s0, then, thanks to the monotonicity assumptions on f3,3, it would follow that
T3(s, µ) ≥ 1 − 2σ for all sufficiently large µ and s ∈ [ŝ, sM0 (µ)); indeed, otherwise,
f3,3(·, µ) would have another local minimum point for a certain s > ξµ8,3 > s∗0(µ).
But this is impossible since T3(·, µ) → 0 as µ → +∞, locally uniformly in (0, s0).
As a consequence, it follows that: b1(µ), b2(µ) → 0; b3(µ), b4(µ), b5(µ) → s0; and
b6(µ), b7(µ), b8(µ)→ s1, as µ→ +∞.

µ∗1 µ∗2 µ∗4 µ∗8

s0

s1

1

µ

u(0)

Figure 10. For λ ∈ [λ∗,+∞) fixed, a minimal qualitative bifurcation
diagram for (1.1) with µ as bifurcation parameter. The topological con-
figuration involves: two unbounded branches bifurcating from 0 and 1
(black) and three unbounded branches (yellow, green) originating from a
supercritical pitchfork bifurcation and two supercritical turning points,
respectively.
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At last, we notice that the branches b4 and b8 bifurcate supercritically from 0
at µ = µ∗2 and from 1 at µ = µ∗1, respectively. Instead, the branches b2 and b3
merge together at µ∗8, so that (µ∗8, s

∗
0(µ∗8)) is a supercritical turning point by the

definition of µ∗8. Analogously, the branches b6 and b7 merge together at µ∗8, and so
(µ∗8, s

∗
1(µ∗8)) is a supercritical turning point too. Concerning b1, b4, and b5, we observe

that these branches merge together at µ∗4 and one can easily show that (µ∗4, s
τ
0(µ∗4))

is a supercritical pitchfork bifurcation point since sτ0(µ∗4) is the global minimum of
the function f l2,1(·, µ∗4).

6.2. The case λ ∈ (0, λ∗)

Let λ ∈ (0, λ∗) be fixed. Here, we aim to show that any minimal bifurcation diagram
of problem (1.1) with respect to µ ∈ (0,+∞) has at least a bounded branch that joins
0 to 1 as in Figure 11. Let us define the time needed to move, along the level lines
associated with (3.2), from a point (us(σ), vs(σ)) of the curve Γ0 to its symmetric
with respect to the axis {v = 0}:

Tsym(s, µ) = 2

∫ us(σ)

m(us(σ))

du√
(vs(σ))2 + 2µ(G(u)−G(us(σ)))

.

We notice that this map is defined, respectively, for s ∈ (0, sM0 (µ))∪(sM1 (µ), 1), if µ ∈
(0, µ̃(λ)); for s ∈ (0, 1) \ {sM(µ)}, if µ = µ̃(λ); and for s ∈ (0, 1), if µ ∈ (µ̃(λ),+∞).
As above, we extend by continuity Tsym in s = 0 and s = 1. Furthermore, the map
Tsym(s, µ) is continuous in µ for s belonging to a compact set of its domain.

µ∗1 µ
∗
2

1

µ

u(0)

µ∗1 µ∗2 µ∗4

1

µ

u(0)

µ∗1µ
∗
2 µ∗4 µ∗8

1

µ

u(0)

Figure 11. For λ ∈ (0, λ∗) fixed, minimal qualitative bifurcation dia-
grams of (1.1) with µ as bifurcation parameter. Depending on λ, different
topological configurations may appear: only a bounded connected branch
(black) connecting 0 to 1 producing one to two solutions (left) or a con-
nected branch crossed by a loop (magenta) which increases the number
of solutions up to either four (center) or eight (right).

Next, when µ ∈ (0, µ̃(λ)], Tsym is an unbounded function that coincides with
f l1,2 in [0, sM0 (µ)) × (0, µ̃(λ)] and with fr3,1 in (sM1 (µ), 1] × (0, µ̃(λ)] (cf., (6.1) and
recall that, for µ = µ̃(λ), sM0 (µ) = sM1 (µ) = sM(µ)). On the other hand, when
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µ ∈ (µ̃(λ),+∞), Tsym(s, µ) coincides either with f1(s, µ) := T1(s, µ) when the con-
figuration of the connection times is as in Figure 6, or with

f1,2,3(s, µ) :=


T1(s, µ), if s ∈ [0, sτ0(µ)] ∪ (sτ1(µ), 1],
T2(s, µ), if s ∈ [sτ0(µ), sω1 (µ)],
T3(s, µ), if s ∈ [sω1 (µ), sτ1(µ)],

when the configuration is as in Figure 8. Accordingly, the map Tsym is a bounded
function provided µ > µ̃(λ). In order to explain the transition between an unbounded
and bounded configuration, we recall, from Section 4, that sω1 (µ)→ sM(µ̃(λ)) as µ→
(µ̃(λ))+. We thus have κ4(µ)→ +∞ as µ→ (µ̃(λ))+ which leads to a breakdown in
continuity for the function Tsym(·, µ̃(λ)) at s = sM(µ̃(λ)).

Throughout this section, suggested as above by numerical computations, we
also assume that:

the functions f1 and f1,2,3 have exactly one local maximum point in the
s-variable.

Next, let us take µ∗1 = µ∗1(λ) and µ∗2 = µ∗2(λ) as the values defined in (5.11)
and (5.12), respectively. We define µ∗∗2 = µ∗∗2 (λ) similarly as in (5.14):

µ∗∗2 (λ) = min

{
µ > µ̃(λ) : max

s
Tsym(s, µ) = 1− 2σ

}
.

We notice that µ∗1 < µ∗2 < µ∗∗2 . Arguing as in Section 6.1, we can infer that:
• for every µ ∈ (µ∗1, µ

∗
2] ∪ {µ∗∗2 }, there is exactly one value ξµ1 ∈ (0, 1) such that

Tsym(ξµ1 , µ) = 1− 2σ;
• for every µ ∈ (µ∗2, µ

∗∗
2 ), there are exactly two values ξµ2,i ∈ (0, 1), i = 1, 2, such

that ξµ2,1 < ξµ2,2 := ξµ1 and Tsym(ξµ2,i, µ) = 1− 2σ.
We stress that these values coincide with those in Section 6.1, provided that µ ∈
(0, µ̃(λ)]. We can thus ensure the existence of two branches:

b̃1(µ) :=

{
0, if µ = µ∗2,
ξµ2,1, if µ ∈ (µ∗2, µ

∗∗
2 ),

b̃2(µ) :=

{
1, if µ = µ∗1,
ξµ1 , if µ ∈ (µ∗1, µ

∗∗
2 ].

These branches bifurcate supercritically from 0 at µ = µ∗2 and from 1 at µ = µ∗1,
respectively. Since for every µ > µ̃(λ) the function Tsym is a bounded continuous
function in [0, 1], then b̃1 and b̃2 merge together at µ∗∗2 , where a subcritical turning
point arises. Thus, we have shown that, for λ ∈ (0, λ∗), the branches bifurcating
from 0 and 1 belong to the same connected component.

Remark 6.1. As observed in Section 4, when µ ∈ (µ̃(λ),+∞) and it is sufficiently
close to µ̃(λ), a loop in the connection times appears around Tsym. If the level 1−2σ
intersects such a loop, we obtain a topologically different configuration for the bifur-
cation diagrams to problem (1.1) which involves a corresponding loop surrounding
the branches b̃1 and b̃2, see Figure 11 (center and right). Moreover, depending on
the number of maxima and minima of the connection times forming the loop (see
Figure 8), there might be some additional turning points on the loop in the bifurca-
tion diagram, as shown in Figure 11 (right). Actually, by continuity, such a situation
should occur for λ ∈ (0, λ∗) sufficiently close to λ∗. C
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Remark 6.2. In this work, we have considered only a symmetric step-wise weight
function. For completeness, we point out that our analysis can be adapted, in the
spirit of the one done in [11], also for non-symmetric step-wise weights. The main
differences in the results regard the structure of the bifurcation diagrams constructed
in this section. Indeed, the secondary bifurcation points on the branches break and
give rise to separate connected components (see also [25] for a similar behavior). C

7. High multiplicity for µ = Kλ, with large λ: Proof of Theorem 1.3
In the previous sections, the positive parameters λ and µ, defining aλ,µ in (1.3), have
been taken independent of each other. In this section, instead, we take µ = Kλ, with
K > 0, and deal with problem (1.4) where the weight ã is defined as in (1.5) in order
to prove Theorem 1.3. For ease of notation, we do not explicitly write the dependence
on λ when it is clear from the context.

Proof of Theorem 1.3. Without loss of generality, we take λ ∈ [λ∗,+∞), since we
aim to determine the asymptotic behavior, as λ→ +∞, of the quantities introduced
in the previous sections.
Proof of (i). Let K > 0. We recall that the continuous map fr3,1 in (6.1) satisfies

lim
s→(sM1 )+

fr3,1(s,Kλ) = +∞, lim
s→1−

fr3,1(s,Kλ) = L1(λ),

(see also Figure 5). Thus, we conclude by noticing that, for µ = Kλ and λ→ +∞,
(4.13) ensures that L1(λ)→ 0.
Proof of (ii). Let K > 2σ

1−2σ . From (4.9), with µ = Kλ, we have

lim
s→0+

T1(s) = L0 =
2σ

K
< 1− 2σ.

The properties of the connection times in Section 4.1 guarantee the existence of
at least one solution of problem (1.4), corresponding to some s ∈ (0, sM0 ), for all
λ ∈ [λ∗,+∞). Moreover, thanks to (4.14), we have, again for all λ ∈ [λ∗,+∞),
another solution corresponding to some s ∈ (sM1 , 1).

For the proof of (iii) and (iv), we need some intermediate technical results on
the asymptotic behavior of Γ0(λ) and the connection times that we present through
the following steps.
Step 1. Asymptotic behavior of s0(λ) and s1(λ). Let s0 = s0(λ), s1 = s1(λ), and s∗
be the points in the interval (0, 1) introduced in Proposition 2.1. We stress that s∗
does not depend on λ and 0 < s0 < s∗ < s1 < 1.

Given λ ∈ [λ∗,+∞), due to the monotonicity of the function s 7→ T0(s, λ)
defined in (2.6), we have that s0 and s1 are the unique values s such that T0(s) = σ in
(0, s∗) and in (s∗, 1), respectively. Since, for fixed s ∈ (0, 1), the function λ 7→ T0(s, λ)
is strictly decreasing, we have that s0 = s0(λ) is strictly decreasing and s1 = s1(λ)
is strictly increasing. Moreover, the function λ 7→ T0(s, λ) converges to 0 locally
uniformly for s ∈ (0, 1) as λ→ +∞; therefore, we have

lim
λ→+∞

s0(λ) = 0 and lim
λ→+∞

s1(λ) = 1. (7.1)
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Step 2. Asymptotic behavior of sM0 (λ) and of the corresponding solution usM0 (λ). We
consider the point sM0 = sM0 (λ), defined as the first value of s ∈ (0, s0) such that
(us(σ), vs(σ)) ∈ Γ0∩Mµ (see Section 4.1). From the definition ofMµ given in (3.3),
we have

(vsM0 (σ))2 − 2KλG(usM0 (σ)) = 0,

while the energy conservation in [0, σ] (cf., (2.3)) implies

(vsM0 (σ))2 + 2λG(usM0 (σ)) = 2λG(sM0 ).

From the above equalities, we deduce that

G(sM0 )− (1 +K)G(usM0 (σ)) = 0. (7.2)

We stress the dependence of usM0 (σ) on λ arising from (2.5) and sM0 = sM0 (λ) by
writing usM0 (λ)(σ, λ). From the fact that 0 < usM0 (σ) < sM0 < s0 and thanks to (7.1),
if we divide (7.2) by (sM0 )3, we get

LM0 := lim
λ→+∞

usM0 (λ)(σ, λ)

sM0 (λ)
=

(
1

1 +K

)1
3

. (7.3)

Finally, from (2.13) with t = σ and s = sM0 , it follows

lM0 := lim
λ→+∞

λsM0 (λ) =

(
I(LM0 )√

2σ

)2

,

where we have set

I(r) :=
√

3

∫ 1

r

dξ√
1− ξ3

. (7.4)

Step 3. Asymptotic behavior of the points θsM0 (λ), with θ ∈ (0, 1), and of the corre-
sponding solutions uθsM0 (λ). Let us now consider a generic point ŝ(θ, λ) := θsM0 (λ),
with θ ∈ (0, 1) independent of λ. From Step 2, we have

l̂(θ) := lim
λ→+∞

λŝ(θ, λ) = θlM0 ∈ (0, lM0 ), (7.5)

and, from (2.13) with t = σ and s = ŝ(θ, λ), it follows that

L̂(θ) := lim
λ→+∞

uŝ(θ,λ)(σ, λ)

ŝ(θ, λ)

satisfies

l̂(θ) =

(
I(L̂(θ))√

2σ

)2

. (7.6)

The previous relation, together with the implicit function theorem and the properties
of I(r), gives that the function θ 7→ L̂(θ) is C1(0, 1), strictly decreasing, and satisfies

lim
θ→0+

L̂(θ) = 1, lim
θ→1−

L̂(θ) = LM0 =

(
1

1 +K

)1
3

. (7.7)

Moreover, from (2.3) and (3.2), in (σ, 1−σ) the energy of the level line of (2.3)
passing through (uŝ(θ,λ)(σ, λ), vŝ(θ,λ)(σ), λ) is

hKλ(ŝ(θ, λ)) = 2λG(ŝ(θ, λ))− 2λ(1 +K)G(uŝ(θ,λ)(σ, λ))
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where hKλ is defined as in (4.4), and it satisfies

lim
λ→+∞

3hKλ(ŝ(θ, λ))

2λ(ŝ(θ, λ))3
= 1− (1 +K)(L̂(θ))3 < 1− (1 +K)(LM0 )3 = 0. (7.8)

Step 4. Characterization of the number of intersections between Γ0 and the level lines
of (3.2) for large λ. Let ŝ(θ, λ) := θsM0 (λ), with θ ∈ (0, 1), as in Step 3, and assume
now that ŝ(θ, λ) < sτ0(λ). Then, there exists a point s̃(θ, λ) ∈ (sτ0(λ), sM0 (λ)) such
that hKλ(ŝ(θ, λ)) = hKλ(s̃(θ, λ)), that is

G(ŝ(θ, λ))− (1 +K)G(uŝ(θ,λ)(σ, λ)) = G(s̃(θ, λ))− (1 +K)G(us̃(θ,λ)(σ, λ)). (7.9)

The same discussion can be performed for ŝ(θ, λ) ∈
(
sτ0(λ), sM0 (λ)

)
, with the differ-

ence that, in such a case, s̃(θ, λ) lies in (0, sτ0(λ)).
Again, from (2.13) with t = σ and s = s̃(θ, λ), we have

σ =
1√

2λŝ(θ, λ) s̃(θ,λ)
ŝ(θ,λ)

∫ 1

us̃(θ,λ)(σ,λ)

s̃(θ,λ)

dξ√
1−ξ3

3 − s̃(θ, λ) 1−ξ4
4

. (7.10)

Since the integral in (7.10) is bounded and (7.5) holds, it entails that lim inf and
lim sup of s̃(θ, λ)/ŝ(θ, λ), as λ → +∞, are positive real numbers. As a conse-
quence, by dividing (7.9) by (ŝ(θ, λ))3, we also obtain that lim inf and lim sup of
us̃(θ,λ)(σ, λ)/s̃(θ, λ), as λ→ +∞, are positive real numbers. Let us denote

`−(θ) := lim inf
λ→+∞

s̃(θ, λ)

ŝ(θ, λ)
, `+(θ) := lim sup

λ→+∞

s̃(θ, λ)

ŝ(θ, λ)
,

L̃−(θ) := lim inf
λ→+∞

us̃(θ,λ)(σ, λ)

s̃(θ, λ)
, L̃+(θ) := lim sup

λ→+∞

us̃(θ,λ)(σ, λ)

s̃(θ, λ)
.

By taking the lim inf and lim sup in (7.10), we obtain

I(L̃−(θ))√
2l̂(θ) `−(θ)

= σ =
I(L̃+(θ))√
2l̂(θ) `+(θ)

.

Suppose by contradiction that `−(θ) < `+(θ): this would imply that I(L̃+(θ)) >

I(L̃−(θ)) and, since I is strictly decreasing, that L̃+(θ) < L̃−(θ), which is impossible.
Then, `−(θ) = `+(θ) and L̃+(θ) = L̃−(θ), that is the quantities

`(θ) := lim
λ→+∞

s̃(θ, λ)

ŝ(θ, λ)
, L̃(θ) := lim

λ→+∞

us̃(θ,λ)(σ, λ)

s̃(θ, λ)

exist and, by taking the limits in (7.9) divided by (ŝ(θ, λ))3 and in (7.10), they satisfy

1− (1 +K)(L̂(θ))3 = (`(θ))3
(

1− (1 +K)(L̃(θ))3
)
, σ =

I(L̃(θ))√
2l̂(θ) `(θ)

.

From the second equality and (7.6), we get

`(θ) =

 I(L̃(θ))√
2l̂(θ)σ

2

=

(
I(L̃(θ))

I(L̂(θ))

)2
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and, by substituting in the first one, we have(
I(L̃(θ))

)6(
1− (1 +K)(L̃(θ))3

)
=
(
I(L̂(θ))

)6(
1− (1 +K)(L̂(θ))3

)
< 0,

where the inequality comes from (7.8).
We study now the differentiable function fK : (LM0 , 1)→ R, defined as

fK(r) :=
(
I(r)

)6(
1− (1 +K)r3

)
.

First, recalling (7.3), we notice that fK(r) < 0 for all r ∈ (LM0 , 1), and fK(r) → 0
as r → (LM0 )+ and as r → 1−. Therefore, fK has a minimum point. We claim that
it is unique. Indeed, since I(r) > 0 for all r ∈ (0, 1), the zeros of

f ′K(r) = 3(I(r))5
(
2I ′(r)(1− (1 +K)r3)− I(r)(1 +K)r2

)
are the solutions of w1(r) = w2(r), where

w1(r) := 2
I ′(r)

I(r)
, w2(r) :=

(1 +K)r2

1− (1 +K)r3
.

For all r ∈ (LM0 , 1), since I ′′(r) = − r
2

2

(
1−r3

3

)− 3
2 < 0, we have

w′1(r) = 2
I ′′(r)I(r)− (I ′(r))2

(I(r))2
< 0,

w′2(r) =
(1 +K)(2 + (1 +K)r3)r

(1− (1 +K)r3)2
> 0.

(7.11)

Therefore, the negative differentiable function fK has a unique critical point. Con-
sequently, we deduce that the equation

fK(r) = ρ, with M := min{fK(r) : r ∈ (LM0 , 1)} < ρ < 0,

has exactly two solutions. Finally, by exploiting the notation used in Step 3, the
continuity of θ 7→ L̂(θ), the definition of fK , and (7.7), we have that{

fK(L̂(θ)) : θ ∈ (0, 1)
}

= [M, 0).

This analysis shows that, for ρ ∈ (M, 0), there exist, for sufficiently large λ, two fam-
ilies of distinct points s−(λ), s+(λ) such that the corresponding (distinct) points on
Γ0(λ) lie on the same level line of (3.2) and the limits for λ→ +∞ of us−(λ)(σ, λ)/s−(λ)

and us+(λ)(σ, λ)/s+(λ) are the two solutions of fK(r) = ρ lying in (LM0 , 1).

Step 5. Asymptotic behavior of sτ0(λ) and of the corresponding solution. The analysis
done in Step 4 guarantees that the point in (LM0 , 1) where fK achieves its minimum,
which will be denoted by Lτ0 , corresponds to the tangent level line of (3.2), in the
sense that

Lτ0 = lim
λ→+∞

usτ0 (λ)(σ, λ)

sτ0(λ)
. (7.12)

With the notation introduced in Step 4, we have that w1(Lτ0) = w2(Lτ0), that is

2
I ′(Lτ0)

I(Lτ0)
=

(1 +K)(Lτ0)2

1− (1 +K)(Lτ0)3
. (7.13)
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As above, we remark that 0 < usτ0 (λ)(σ, λ) < sτ0(λ) < s0(λ), thus all these quantities
tend to 0 as λ→ +∞, and we have

lτ0 := lim
λ→+∞

λsτ0(λ) =

(
I(Lτ0)√

2σ

)2

. (7.14)

According to the notation introduced in Section 3, we now denote by m(usτ0 (σ)) the
abscissa of the intersection point between the level line of (3.2) through (usτ0 (σ), vsτ0 (σ))
and the u-axis. We exploit the conservation of the energies (cf., (2.3) and (3.2)) to
deduce

G(sτ0)− (1 +K)G(usτ0 (σ)) = −KG(m(usτ0 (σ))).

By dividing this relation by (sτ0)3 and passing to the limit as λ→ +∞, we have

Mτ
0 := lim

λ→+∞

m(usτ0 (λ)(σ, λ))

sτ0(λ)
=

(
(1 +K)(Lτ0)3 − 1

K

)1
3

. (7.15)

Step 6. Asymptotic behavior of `01,2(λ). Recalling the definition (4.10) of `01,2, that
is the common limit of the connection times T1 and T2 as s → sτ0 , we investigate
how `01,2 depends on λ. Observing that, from the conservation of the energy (3.2),
we have

(vsτ0 (σ))2 − 2KλG(usτ0 (σ)) = −2KλG(m(usτ0 (σ))),

from (4.10) we deduce

lim
λ→+∞

`01,2 = lim
λ→+∞

2√
2Kλ

∫ usτ0
(σ)

m(usτ0
(σ))

du√
G(u)−G(m(usτ0 (σ)))

= lim
λ→+∞

2√
2Kλsτ0

∫ usτ0
(σ)

sτ0

m(usτ0
(σ))

sτ0

dũ√
G(sτ0 ũ)−G(m(usτ0

(σ)))

(sτ0 )3

=
2√

2Klτ0

∫ Lτ0

Mτ
0

dũ√
ũ3−(Mτ

0 )3

3

=
2σ

I(Lτ0)
√
K

∫ Lτ0

Mτ
0

dũ√
ũ3−(Mτ

0 )3

3

=: Θ1(K), (7.16)

where, to get the last equality, we have used (7.14).
Step 7. Asymptotic behavior of `03(λ). Recalling the definition (4.11) of `03, that is
the limit of the connection time T3 as s → sτ0 , we now investigate how `03 depends
on λ. Arguing as above, we have

`03 =
2√

2Kλ

∫ usτ0
(σ)

m(usτ0
(σ))

du√
G(u)−G(m(usτ0 (σ)))

+
1√

2Kλ

∫ usτ1
(σ)

usτ0
(σ)

du√
G(u)−G(m(usτ0 (σ)))

,

(7.17)
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where sτ1 ∈ (s1, 1) is the value of s ∈ (0, 1) giving the other intersection between the
level line Hµ(u, v) = Hµ(usτ0 (σ), vsτ0 (σ)) and Γ0, apart from (usτ0 (σ), vsτ0 (σ)). First
of all, thanks to (7.1), we observe that

lim
λ→+∞

sτ1(λ) = 1. (7.18)

Moreover, as in (7.9), the conservation of the energies implies that

G(sτ0)− (1 +K)G(usτ0 (σ)) = G(sτ1)− (1 +K)G(usτ1 (σ)),

thus (7.12), (7.14), and (7.18) give that Lτ1 := limλ→+∞ usτ1 (λ)(σ, λ) satisfies

G(Lτ1) =
G(1)

1 +K
∈ (0, G(1)),

and, so, Lτ1 ∈ (0, 1). As a consequence, from (7.17) we have

lim
λ→+∞

`03 = lim
λ→+∞

2√
2Kλsτ0

∫ usτ0
(σ)

sτ0

m(usτ0
(σ))

sτ0

dũ√
G(sτ0 ũ)−G(m(usτ0

(σ)))

(sτ0 )3

+ lim
λ→+∞

1√
2Kλsτ0

∫ usτ1
(σ)

sτ0

usτ0
(σ)

sτ0

dũ√
G(sτ0 ũ)−G(m(usτ0

(σ)))

(sτ0 )3

= Θ1(K) +
σ

I(Lτ0)
√
K

∫ +∞

Lτ0

dũ√
ũ3−(Mτ

0 )3

3

=: Θ2(K). (7.19)

Proof of (iii). We analyze the behavior of Θ1(K) defined in (7.16) as K → +∞.
First of all, we rewrite (7.13) as

1

1 +K
= (Lτ0(K))

2

(
Lτ0(K) +

I(Lτ0(K))

2I ′(Lτ0(K))

)
(7.20)

and assume by contradiction that lim infK→+∞ Lτ0(K) = 0. Then, the lim inf for
K → +∞ of the last factor in (7.20) would be equal to I(0)/(2I ′(0)) < 0. This
would imply that, for some sequence of K converging to +∞, the right-hand side
in (7.20) is negative, contradicting the positivity of the left-hand side. The same
reasoning guarantees that lim supK→+∞ Lτ0(K) > 0. Moreover, by letting K → +∞
in (7.20), we have that both lim inf and lim sup satisfy

2
I ′(r)

I(r)
= −1

r
.

This equation has a unique solution L̄ thanks to (7.11). Thus limK→+∞ Lτ0(K) = L̄.
Furthermore, thanks to (7.15), also limK→+∞Mτ

0 (K) = L̄. From (7.16) we conclude
that

lim
K→+∞

Θ1(K) = 0.

Next, we claim that
lim

K→0+
Θ1(K) = +∞. (7.21)
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Once this is proved, by the continuity of Θ1(K), there exists K4 > 0 such that

Θ1(K4) = 1− 2σ and Θ1(K) < 1− 2σ, for all K > K4. (7.22)

With this definition, we have that, for all K > K4, limλ→+∞ `01,2 < 1 − 2σ, and
the properties of the connection times shown in Section 4.1 guarantee the existence
of at least four solutions of problem (1.4), once K > K4 has been fixed and λ is
sufficiently large (depending on K).

To conclude this step, it only remains to prove (7.21). First of all, since, from
Step 5, Lτ0(K) ∈ (LM0 , 1), (7.3) implies that limK→0+ Lτ0(K) = 1. Then, thanks to
the definition (7.16), since I is continuous and I(1) = 0, it will be enough to show
that ∫ Lτ0 (K)

Mτ
0 (K)

dũ√
ũ3 − (Mτ

0 (K))3

is bounded away from zero, as K → 0+. This will follow if we prove that

lim
K→0+

Mτ
0 (K) ∈ [0, 1). (7.23)

From (7.15) and L’Hôpital’s rule, we have

lim
K→0+

(Mτ
0 (K))3 = lim

K→0+

(1 +K)(Lτ0(K))3 − 1

K

= lim
K→0+

(Lτ0(K))3 + 3(1 +K)(Lτ0(K))2(Lτ0(K))′,

provided that the latter limit exists. Thus, to get (7.23), it will suffice to prove that
limK→0+(Lτ0(K))′ is a negative real number. Using (7.4), we rewrite (7.20) as

1

1 +K
= (Lτ0(K))3 − 1

2
√

3
I(Lτ0(K))

√
1− (Lτ0(K))3(Lτ0(K))2,

we differentiate with respect to K

− 1

(1 +K)2
= (Lτ0(K))′

(
3(Lτ0(K))2 +

1

2
(Lτ0(K))2 +

√
3I(Lτ0(K))(Lτ0(K))4

4
√

1− (Lτ0(K))3

)

− (Lτ0(K))′
Lτ0(K)√

3
I(Lτ0(K))

√
1− (Lτ0(K))3,

and, by taking the limit as K → 0+ and using that limr→1−
I(r)√
1−r = 2, we obtain

that limK→0+(Lτ0(K))′ = − 1
4 , which concludes the proof of our claim.

Proof of (iv). We analyze the behavior of Θ2(K) defined in (7.19) as K → +∞. By
reasoning as in the proof of (iii), we have that

lim
K→+∞

Θ2(K) = 0, lim
K→0+

Θ2(K) = +∞,

thus, by continuity, there exists K8 such that

Θ2(K8) = 1− 2σ and Θ2(K) < 1− 2σ, for all K > K8. (7.24)

With this definition, we have that, for all K > K8, limλ→+∞ `03 < 1 − 2σ, and
the properties of the connection times shown in Section 4.1 guarantee the existence
of at least eight solutions of problem (1.4), once K > K8 has been fixed and λ is
sufficiently large (depending on K).
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In addition, from (7.19) and (7.22), we have that

Θ2(K4) > Θ1(K4) = 1− 2σ;

hence, by (7.24), we conclude that K8 > K4. �

We point out that K4 and K8 only depend on σ, as it is clear from their
definition (cf., (7.16), (7.19), (7.22), and (7.24)).

We conclude this section by stating Theorem 1.3 under a dual viewpoint, which
consists in fixing K > 0 and letting σ ∈

(
0, 1

2

)
vary to obtain our multiplicity results.

Corollary 7.1. Let ã be as in (1.5) with fixed K > 0. Then, there exist two values
σ4(K), σ8(K), with 0 < σ8(K) < σ4(K), such that the following assertions hold:

(i) for all σ ∈
(
0, 1

2

)
, there exists λ̂∗1(σ) > 0 such that problem (1.4) admits at least

one solution for all λ > λ̂∗1(σ);
(ii) for all σ ∈

(
0, K

2(K+1)

)
, problem (1.4) admits at least two solutions for all

λ > λ∗, where λ∗ is as in Theorem 1.1;
(iii) for all σ ∈ (0, σ4(K)), there exists λ̂∗4(σ) > 0 such that problem (1.4) admits at

least four solutions for all λ > λ̂∗4(σ);
(iv) for all σ ∈ (0, σ8(K)), there exists λ̂∗8(σ) > 0 such that problem (1.4) admits at

least eight solutions for all λ > λ̂∗8(σ).

Proof. Let K > 0 be fixed. It is enough to apply the procedure exploited for the
proof of Theorem 1.3. Indeed, we consider the quantities L0 and L1 introduced in
(4.9) and (4.13) respectively, which in this setting read as

L0 =
2σ

K
, L1 =

2√
Kλ

arctan

(
tanh(

√
λσ)√

K

)
.

Our aim is to study how the previous quantities, as well as those in (7.16) and (7.19),
vary with respect to σ and if they are above or below the level 1−2σ. For this reason,
we explicitly denote here the dependence of all these quantities on σ.

For point (i), we observe that L1 is arbitrarily small for sufficiently large λ,
while, for point (ii), we recall that L0 > L1, and observe that

L0(σ) < 1− 2σ if and only if σ <
K

2(1 +K)
.

For points (iii) and (iv), we have that the functions Θ1(σ) and Θ2(σ) satisfy

Θ1(0) = 0 = Θ2(0), 0 < Θ1(σ) < Θ2(σ), for all σ ∈ (0, 1/2).

On the other hand, 1−2σ decreases from 1 to 0 as σ increases from 0 to 1/2. Hence,
there exists a unique σ4 and a unique σ8 such that

Θ1(σ4) = 1− 2σ4 and Θ1(σ) < 1− 2σ, for all σ < σ4,
Θ2(σ8) = 1− 2σ8 and Θ2(σ) < 1− 2σ, for all σ < σ8.

At last, by reasoning as in the proof of Theorem 1.3, we notice that 0 < σ8 < σ4 and
complete the proof of these statements using the behavior of the connection times
shown in Section 4.1. �
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Remark 7.2. Both Theorem 1.3 and Corollary 7.1 assert that problem (1.4) admits
at least two solutions, for all λ ∈ [λ∗,+∞) provided that the mean value of the
weight

∫ 1

0
ã(t) dt is negative. Moreover, there is a higher multiplicity, with at least

four and eight solutions, provided that the mean is sufficiently negative and λ is
sufficiently large. These multiplicity results are compatible with those in [1, 5], where
the existence of 3m − 1 solutions of (1.1) is obtained for a weight term aλ,µ with
m intervals of positivity separated by intervals of negativity, a negative mean value,
λ > λ∗ and µ sufficiently large. C

Remark 7.3. We conjecture that, in Theorem 1.3,K4 is larger than 2σ
1−2σ , which is the

threshold appearing in point (ii). To obtain such a result (by using the notation of the
proof of Theorem 1.3), it would be sufficient, for example, to prove that Θ1(K) > 2σ

K ,
for all K > 0, as numerical simulations suggest. In the light of Corollary 7.1, this
conjecture reads as σ4(K) < K

2(K+1) , for all K > 0. C

Appendix A. Monotonicity of the time maps Tp and Tl
This appendix contains the omitted details in the proofs of Propositions 3.1 and 3.2
concerning the properties of the time maps Tp and Tl. To this purpose we maintain
the notation introduced in Section 3.

Lemma A.1. For every x ∈ (0, xp) and ξ ∈ (0, 1), if y(x) = −kx2, with k > 0, and
N(x, ξ) is as in (3.10), then ∂ξN(x, ξ) < 0.

Proof. From (3.10) we obtain that

∂ξN(x, ξ)

µ(x−m(x))
= −(1−m′(x))g(x− (x−m(x))ξ)

+ (x−m(x))g′(x− (x−m(x))ξ)(1− (1−m′(x))ξ).

(A.1)

By using (3.4) and (3.6), relation (3.11) becomes

m′(x) =
µg(x)− y(x)y′(x)

µg(m(x))
=
µg(x)− 2k2x3

µg(m(x))
=
xg(x)− 4 (G(x)−G(m(x)))

xg(m(x))

and, by substituting in (A.1), we get

xg(m(x))
∂ξN(x, ξ)

µ(x−m(x))
=

=
(
x(g(x)− g(m(x)))− 4(G(x)−G(m(x)))

)
g(x− (x−m(x))ξ)

+ (x−m(x))g′(x− (x−m(x))ξ)
(
xg(m(x)) + (x(g(x)− g(m(x)))

− 4(G(x)−G(m(x))))ξ
)
.

By recalling that 0 < m(x) < x < 1 for all x ∈ (0, 1), the previous relation shows
that, in order to prove that ∂ξN(x, ξ) < 0 for all x ∈ (0, xp) and ξ ∈ (0, 1), it is
sufficient to show that

Ñp(x,m, ξ) < 0, for all ξ ∈ (0, 1), x ∈ (0, 1) and m ∈ (0, x),
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where

Ñp(x,m, ξ) :=
(
x(g(x)− g(m))− 4(G(x)−G(m))

)
g(x− (x−m)ξ)

+ (x−m)g′(x− (x−m)ξ)
(
xg(m) + (x(g(x)− g(m))− 4(G(x)−G(m))) ξ

)
.

By using the expressions of g and G, we have

3Ñp(x,m, ξ) = (x−m)(x− (x−m)ξ)N̂p(x,m, ξ), (A.2)

where

N̂p(x,m, ξ) := a(x,m)ξ2 + b(x,m)ξ + c(x,m), (A.3)

a(x,m) := 2 (x−m)
2 (

3m3 − 4m2 −mx− x2
)
,

b(x,m) := (x−m)(−4m2 + 3m3 −mx+ 13m2x− 12m3x− x2 +mx2 + x3), (A.4)

c(x,m) := x(2m2 − 3m3 −mx− 5m2x+ 6m3x− x2 +mx2 + x3).

The first two factors in the right-hand side of (A.2) are positive in the range of
the variables that we are considering. We claim that the third one is negative, and,
hence, conclude the proof.

As it is apparent from (A.3), N̂p(x,m, ξ) is a parabola in the ξ-variable. We
aim to show that:

(i) a(x,m) < 0,
(ii) c(x,m) < 0,

(iii) if b(x,m) > 0, then ∆(x,m) < 0, where ∆(x,m) := b(x,m)2 − 4a(x,m)c(x,m)
is the discriminant of the parabola.

The first point says that the parabola is concave. The second one says that the
parabola has a negative value for ξ = 0; thus, if the vertex has negative abscissa,
the parabola is strictly decreasing and, hence, negative, for all ξ ∈ (0, 1). On the
contrary, when the vertex has positive abscissa, the first and last points guarantee
that the parabola lies always below the level 0. As a consequence, if we show (i),
(ii) and (iii), our claim is proved.

To prove (i), we can equivalently show that f1(x,m) := 3m3−4m2−mx−x2 < 0
in the region

R :=
{

(x,m) : 0 < m < x < 1
}
.

Since ∂f1
∂x = −m − 2x < 0 in R, the function f1 does not have critical points in R.

On the boundary of R, we have
• f1(x, 0) = −x2 < 0 for all x ∈ (0, 1);
• f1(1,m) = 3m3 − 4m2 − m − 1, which is negative for all m ∈ (0, 1); indeed,

it is a cubic with positive leading coefficient, it is negative for m = 0, and its
derivative vanishes for m = −1/9 and m = 1, thus it is strictly decreasing for
all m ∈ (0, 1);

• f1(x, x) = 3x2(x− 2) < 0 for all x ∈ (0, 1);
hence f1 is negative in R.

For point (ii), we consider

f2(x,m) := 2m2 − 3m3 −mx− 5m2x+ 6m3x− x2 +mx2 + x3
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and, as above, we prove, first of all, that it does not have critical points in R. Indeed,
the relation ∂f2

∂x = ∂f2
∂m has two roots

x±(m) :=
1

4

(
1− 12m+ 18m2 ±

√
∆2(m)

)
,

where ∆2(m) := 1+16m+148m2−480m3 +324m4. Moreover, ∆2(m) has two zeros
m± in (0, 1) with 1

2 < m− < m+ < 1, and is positive in (0, 1) \ [m−,m+]. Observe
that x−(m) < x+(m), and, in addition, it is easy to show that:
• x−(m) < 0 for every 0 < m < 1

2 ;
• x+(m) ≤ 1

2 ≤ m for every 1
2 ≤ m < m−;

• x−(m) > 1 for every m+ ≤ m < 1.
Therefore, for ∂f2

∂x (x,m) = ∂f2
∂m (x,m) to hold in R, m has to lie in

(
0, 1

2

)
, and x has

to be equal to x+(m). Moreover, the relation ∂f2
∂x = 0 has only one positive root for

0 < m < 1, which is

x0(m) :=
1

3

(
1−m+

√
1 +m+ 16m2 − 18m3

)
,

and it holds that x0(m) > x+(m) for all 0 < m < 1
2 . This shows that f2 cannot

admit critical points in R. As a second step, we study f2 on the boundary of R:
• f2(x, 0) = x2(x− 1) < 0 for all x ∈ (0, 1);
• f2(1,m) = 3m2(m− 1) < 0 for all m ∈ (0, 1);
• f2(x, x) = 6x3(x− 1) < 0 for all x ∈ (0, 1).

This concludes the proof of point (ii).
We pass to (iii), thus we assume that b(x,m) > 0, and, from (A.4), we get

f3(x,m) := −4m2 + 3m3 −mx+ 13m2x− 12m3x− x2 +mx2 + x3 > 0.

Our goal is to prove that ∆(x,m) < 0. Direct computations give

∆(x,m) = (x−m)2δ1(x,m)δ2(x,m),

where

δ1(x,m) := −4m2 + 3m3 −mx+m2x− x2 +mx2 + x3,

δ2(x,m) := −4m2 + 3m3 −mx+ 9m2x− x2 + 9mx2 + 9x3,

thus we want to show that δ1 and δ2 have opposite sign. This follows since

δ1(x,m) < 0 and 0 < f3(x,m) < δ2(x,m) in R. (A.5)

Indeed, for the first inequality, we recall that the discriminant of a cubic equation
ax3 + bx2 + cx+ d is given by 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2. Therefore, the
discriminant of the cubic equation x 7→ δ1(x,m) is

−3m2(5 + 4m+ 108m2 − 176m3 + 68m4),

which is negative since

108m2 − 176m3 + 68m4 = m2(108− 176m+ 68m2) > 0,

for all m ∈ (0, 1). This shows that the cubic x 7→ δ1(x,m) has a unique real root,
which is greater than 1, since δ1(1,m) = 3m2(m − 1) < 0 and δ1(x,m) → +∞ as
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x→ +∞. This shows the first relation of (A.5). The second relation is equivalent to
4x(−m2 + 3m3 + 2mx+ 2x2) > 0. If we denote

f4(x,m) := −m2 + 3m3 + 2mx+ 2x2,

we have that ∂f4∂x = 4x+2m > 0, thus f4(x,m) has no critical points in R. Moreover,
on the boundary of such a region we have:

• f4(x, 0) = 2x2 > 0 for all x ∈ (0, 1);
• f4(1,m) = 2 + 2m−m2 + 3m3 > 2−m2 > 0 for all m ∈ (0, 1);
• f4(x, x) = 3x2(x+ 1) > 0 for all x ∈ (0, 1).

Therefore, the second relation in (A.5) follows, and the proof is complete. �

Lemma A.2. For every x ∈ (xl, 1) and ξ ∈ (0, 1), if y(x) = −k(1 − x), with k > 0,
and N(x, ξ) is as in (3.10), then ∂ξN(x, ξ) > 0.

Proof. By using (3.12) and (3.6), relation (3.11) now gives

m′(x) =
µg(x)− y(x)y′(x)

µg(m(x))
=
µg(x) + k2(1− x)

µg(m(x))

=
(1− x)g(x) + 2 (G(x)−G(m(x)))

(1− x)g(m(x))
.

and, by substituting in (A.1), we get

(1− x)g(m(x))
∂ξN(x, ξ)

µ(x−m(x))
=

= g(x− (x−m(x))ξ)
(

(1− x)(g(x)− g(m(x))) + 2(G(x)−G(m(x)))
)

+ (x−m(x))g′(x− (x−m(x))ξ)·

·
(

(1− x)g(m(x)) + ((1− x)(g(x)− g(m(x))) + 2(G(x)−G(m(x))))ξ
)
.

Thus, as in Lemma A.1, if we set

Ñl(x,m, ξ) := g(x− (x−m)ξ)
(

(1− x)(g(x)− g(m)) + 2(G(x)−G(m))
)

+ (x−m)g′(x− (x−m)ξ)·

·
(

(1− x)g(m) + ((1− x)(g(x)− g(m)) + 2(G(x)−G(m)))ξ
)
,

it is sufficient to show that Ñl(x,m, ξ) > 0 for all ξ ∈ (0, 1), x ∈ (0, 1) andm ∈ (0, x).
By using the expressions of g and G, we have

−6Ñl(x,m, ξ) = (x−m)(x− (x−m)ξ)N̂l(x,m, ξ), (A.6)
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where

N̂l(x,m, ξ) := a(x,m)ξ2 + b(x,m)ξ + c(x,m),

a(x,m) := 2(x−m)2
(
−6m+ 2m2 + 3m3 − 6x+ 8mx− 3m2x+ 8x2

− 3mx2 − 3x3
)
,

b(x,m) := (x− 1)(x−m)
(
6m+ 16m2 − 21m3 + 6x− 8mx+ 3m2x− 8x2

+ 3mx2 + 3x3
)
,

c(x,m) := (x− 1)
(
12m2 − 12m3 + 6mx− 20m2x+ 15m3x+ 6x2 − 8mx2

+ 3m2x2 − 8x3 + 3mx3 + 3x4
)
.

The first two factors in (A.6) are positive; the third one can be shown to be negative
for the values of the parameters that we are considering with similar arguments as
in the proof of Lemma A.1, i.e., by proving that a(x,m) and c(x,m) are negative
and, here, that b(x,m) is negative too. �

Appendix B. Behavior of T1(s) near s = 0

The purpose of this appendix is proving that the connection time T1(s) defined in
(4.12) is increasing in a right neighborhood of s = 0. To do so, we will show that

lim
s→0+

T ′1(s) > 0. (B.1)

As a consequence, all the subsequent expansions are meant to be valid for s → 0+.
Starting from (4.12), direct transformations give

T1(s) = 2

∫ us(σ)−m(us(σ))

0

dũ√
(vs(σ))

2
+ 2µ (G(ũ+m(us(σ)))−G(us(σ)))

= 2

∫ 1

0

dξ√
(vs(σ))2+2µ(G((us(σ)−m(us(σ)))ξ+m(us(σ)))−G(us(σ)))

(us(σ)−m(us(σ)))2

. (B.2)

To achieve our goal, we will establish some asymptotic expansions of the quantities
appearing in expression (B.2). We start the investigation with the terms depending
only on the problem in the interval [0, σ]. We start by proving that

us(t) = s− λt2

2
s2 + o(s2), for all t ∈ [0, σ]. (B.3)

The first term in the development has already been proved in (2.14). Moreover, from
(2.16), for all t ∈ [0, σ], we deduce that

√
2λt =

∫ 0

us(t)−s

dũ√
G(s)−G(ũ+ s)

=

∫ 0

us(t)−s
s2

dξ√
G(s)−G(s2ξ+s)

s4

. (B.4)

Since the radicand converges, for ξ < 0, to −ξ as s→ 0+, if we set

l−2 := lim inf
s→0+

us(t)− s
s2
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and take the lim inf in (B.4), the dominated convergence theorem gives that l−2
satisfies

√
2λ t =

∫ 0

l−2

dξ√
−ξ

= 2

√
−l−2 , for all t ∈ [0, σ].

Reasoning similarly with the lim sup, we obtain that

lim
s→0+

us(t)− s
s2

= −λt
2

2
, for all t ∈ [0, σ].

Therefore, (B.3) holds true.
The next step consists in proving that

vs(σ) = −λσs2 +
λσ

3

(
3 + λσ2

)
s3 + o(s3). (B.5)

We notice that the first term in the development has already been proved in (2.15).
Moreover, we observe that (B.5) is equivalent to

lim
s→0

u′s(σ) + λσs2

s3
=
λσ

3

(
3 + λσ2

)
.

By integrating (2.5) in [0, σ], we obtain

u′s(σ) + λσs2

s3
= −λ

∫ σ

0

g (us(t))− s2

s3
dt,

and, thanks to (B.3), the integrand converges to −1 − λt2

2 , as s → 0+. Thus, the
dominated convergence theorem ensures that

lim
s→0+

u′s(σ) + λσs2

s3
= −λ

∫ σ

0

(
−1− λt2

2

)
dt = λ

(
σ +

λσ3

3

)
,

as desired. Finally, to conclude this analysis in [0, σ], we will improve the expansion
(B.3) of us(σ) by computing the value of α3 such that

us(σ) = s− λσ2

2
s2 + α3s

3 + o(s3). (B.6)

First of all, we observe that such value α3 exists since the differentiable dependence
theorem with respect to parameters ensures that the function s 7→ us(σ) is C∞.
Then, we recall the energy conservation in [0, σ], which reads

(vs(σ))2 + 2λG(us(σ)) = 2λG(s) = 2λ

(
s3

3
− s4

4

)
,

and, by considering (B.6) and (B.5), we compute the corresponding expansion up to
the fifth order, and so

α3 =
λσ2

12

(
6 + λσ2

)
.

For notational convenience, we denote the coefficients in (B.6) and (B.5) as follows:

α2 := −λσ
2

2
, β2 := −λσ, β3 :=

λσ

3

(
3 + λσ2

)
. (B.7)

We pass to study m(us(σ)), which, due to the energy conservation in [σ, 1−σ],
satisfies

(vs(σ))
2 − 2µG(us(σ)) = −2µG(m(us(σ))), (B.8)
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and, again thanks to the differentiable dependence theorem with respect to param-
eters, it is a regular function of s; thus it can be written as

m(us(σ)) = m1s+m2s
2 +m3s

3 + o(s3),

for some coefficients m1,m2,m3 ∈ R. By plugging this expansion in (B.8), using
(B.6), (B.5), and (B.7) and equaling the coefficients of the same powers of s, we
obtain

m1 = 1,

m2 = α2 −
β2

2

2µ
= −λ(λ+ µ)σ2

2µ
, (B.9)

m3 = m2 −m2
2 − α2 + α2

2 + α3 −
β2β3

µ

=
λ2σ2

12µ2

(
6µ− 3λ2σ2 − 2λµσ2

)
+
λσ2

12

(
6 + λσ2

)
.

We now set N(s, ξ) to be the numerator in the square root in (B.2), and D(s) the
denominator. Then, by differentiating (B.2) with respect to s, we obtain

T ′1(s) = −
∫ 1

0

(
N(s, ξ)

D(s)

)− 3
2 ∂sN(s, ξ)D(s)−N(s, ξ)D′(s)

(D(s))
2 dξ. (B.10)

The expansions determined above give

N(s, ξ) = n4(ξ)s4 + n5(ξ)s5 + o(s5), D(s) = d4s
4 + d5s

5 + o(s5), (B.11)

where

n4(ξ) = β2
2 + 2µ

(
(α2 −m2)ξ +m2 − α2

)
= 2µ(α2 −m2)ξ = λ2σ2ξ,

n5(ξ) = 2β2β3 + 2µ
((

(α2 −m2)ξ +m2

)2 − ((α2 −m2)ξ +m2

)
+ (α3 −m3)ξ +m3

)
− 2µ(α2

2 − α2 + α3),

d4 = (α2 −m2)2,

d5 = 2(α2 −m2)(α3 −m3),

(in the computation for n4(ξ) we have used (B.9)). Thus, the first factor in the
integral of (B.10) satisfies

lim
s→0+

(
N(s, ξ)

D(s)

)− 3
2

=

(
λσ

2µ

)3

ξ−
3
2 .

Regarding the second factor, by differentiating the expressions (B.11) with respect
to s, we see that the coefficient of s7 in the numerator vanishes (it is equal to
4n4(ξ)d4 − 4n4(ξ)d4), and the coefficient of s8 is

n5(ξ)d4 − n4(ξ)d5 =
λ7ξσ8(3λ(ξ − 3)− 8µ)

24µ3
.
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As a consequence, by passing to the limit in (B.10), we obtain

lim
s→0+

T ′1(s) = −
(
λσ

2µ

)3
λ7σ8

24µ3

16µ4

λ8σ8

∫ 1

0

ξ−
1
2 (3λ(ξ − 3)− 8µ) dξ

= −λ
2σ3

12µ2

(
3λ

∫ 1

0

√
ξ dξ − (9λ+ 8µ)

∫ 1

0

dξ√
ξ

)
=

4λ2(λ+ µ)σ3

3µ2
> 0,

as desired.

Remark B.1. We observe that, with the same asymptotic expansions, by passing to
the limit in (B.2), we can recover the value of lims→0+ T1(s) obtained in (4.9). C
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