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Abstract. We deal with the periodic boundary value problem associated
with the parameter-dependent second-order nonlinear differential equation

u′′ + cu′+
(
λa+(x)− µa−(x)

)
g(u) = 0,

where λ, µ > 0 are parameters, c ∈ R, a(x) is a locally integrable P -periodic
sign-changing weight function, and g : [0, 1] → R is a continuous function
such that g(0) = g(1) = 0, g(u) > 0 for all u ∈ ]0, 1[, with superlinear
growth at zero. A typical example for g(u), that is of interest in population
genetics, is the logistic-type nonlinearity g(u) = u2(1− u).

Using a topological degree approach, we provide high multiplicity re-
sults by exploiting the nodal behaviour of a(x). More precisely, whenm is the
number of intervals of positivity of a(x) in a P -periodicity interval, we prove
the existence of 3m−1 non-constant positive P -periodic solutions, whenever
the parameters λ and µ are positive and large enough. Such a result ex-
tends to the case of subharmonic solutions. Moreover, by an approximation
argument, we show the existence of a countable family of globally defined
solutions with a complex behaviour, coded by (possibly non-periodic) bi-
infinite sequences of 3 symbols.
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1. Introduction and statement of the results
In this paper, we investigate existence and multiplicity of non-constant positive
solutions for the parameter-dependent second-order ordinary differential equation

(Eλ,µ) u′′ + cu′ +
(
λa+(x)− µa−(x)

)
g(u) = 0,

where λ and µ are positive real parameters, c ∈ R, a+(x) and a−(x) are the
positive and the negative part, respectively, of a P -periodic and locally inte-
grable sign-changing function a : R → R, and g : [0, 1] → R is a continuous map
satisfying the sign condition

(g∗) g(0) = g(1) = 0, g(u) > 0 for all u ∈ ]0, 1[,

and the superlinear growth condition at zero

(g0) lim
u→0+

g(u)

u
= 0.

Following a terminology popularized in [31], we refer to (Eλ,µ) as an indefinite
equation, meaning that the weight function a(x) changes sign. In the last decades
this kind of equations has been widely investigated, both in the ODE and in the
PDE setting, starting from the classical contributions [1, 2, 3, 4, 13] and till to
very recent ones [8, 16, 27, 33, 45, 46, 47]; we refer the reader to [17] for a quite
exhaustive bibliography on the subject.

The mathematical questions we address here are motivated by the study of
the spatial effects on the variation in the genetic material along environmental
gradients. In population genetics, when individuals of a continuously distributed
population mate at random in their habitat, and no genetic drift nor new mu-
tations appear, the evolution of the frequencies of two alleles, A1 and A2, at a
single locus under the action of migration and selection can be described through
the reaction-diffusion boundary value problem

∂tu =
∑
i,j Vi,j(x)∂xixj

u+ b(x) · ∇u+ h(x, u) in Ω× ]0,+∞[,
0 ≤ u ≤ 1 in Ω× ]0,+∞[,
ν(x) · V (x)∇u = 0 on ∂Ω× ]0,+∞[,

(1.1)

where u(x, t) and 1−u(x, t) denote the allele frequency of A1 and A2, respectively
(cf. [35, 40]). The set Ω ⊂ RN (N ≥ 1) represents the habitat that is assumed to
be a bounded domain with smooth boundary ∂Ω and outward unit normal vector
ν(x). The matrix-valued function V (x) and the vector-valued function b(x) are
given and characterize the migration. Finally, h(x, u) is a nonlinear term which
describes the effects of the selection and satisfies h(x, 0) = 0 = h(x, 1) for all
x ∈ Ω, so that u ≡ 0 and u ≡ 1 are constant solutions of problem (1.1) that
means that allele A1 is absent or is fixed in the population, respectively.

In this context, available theory also assumes that migration is homogeneous
and isotropic, namely, V (x) is constant and b ≡ 0, and that the selection is of the
form h(x, u) = a(x)g(u), where a(x) is the spatial factor and g(u) is a function
of gene frequency satisfying (g∗). The sign-indefinite weight term a(x) reflects at
least one change in the direction of selection and leads to several environmental
regions in the habitat Ω which are favorable (a(x) > 0), neutral (a(x) = 0),
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or unfavorable (a(x) < 0) for one allele. In this connection, investigations on
non-constant positive stationary solutions (i.e., clines) lead to the study of the
Neumann problem 

d∆u+ a(x)g(u) = 0 in Ω,
0 ≤ u ≤ 1 in ∂Ω,
∂νu = 0 on ∂Ω,

(1.2)

where ∆ denotes the Laplace operator and d > 0 is the diffusion rate. Neumann
boundary conditions model an impenetrable barrier for the population so that
no-flux of genes across the boundary occurs. The number and the stability of
non-constant positive solutions of (1.2) are governed by the features of both the
components a(x) and g(u).

The existence of a unique non-constant and globally asymptotically stable
solution of (1.2) is proved in [12, 30, 34] for sufficiently small d provided that∫

Ω
a(x) dx < 0 and g(u) is a smooth function such that g′′(u) < 0 for every

u ∈ ]0, 1[. The archetypical example is the case when no allele is dominant or
the population is haploid, namely g(u) = u(1 − u) (e.g., [28, 39]). On the other
hand, if g(u) is not concave, multiplicity results for (1.2) are shown in [36, 44]. In
particular, if g′(0) = 0 and we assume also that limu→0+ g(u)/uk > 0 for some
k > 1, then for d sufficiently small there exist at least two non-constant solutions:
one stable and the other unstable (cf. [36, Theorem 2.9]). The main example in
this framework concerns completely dominance of allele A2 over allele A1, namely
g(u) = u2(1− u) (e.g., [35, 36]).

In this paper, we deal with migration-selection models in a unidimensional
habitat. We also assume that V (x) and b(x) are constant functions, with b(x) = c
for some c ∈ R. Moreover, we describe the strength of selection in the environ-
mental regions which are beneficial or harmful for the alleles by introducing two
positive independent parameters, λ and µ, on which we discharge the migration
rate. Precisely, the weight term we consider is defined as

aλ,µ(x) := λa+(x)− µa−(x). (1.3)

Hence, the selection is h(x, u) = aλ,µ(x)g(u) where g(u) satisfies (g∗) and, in order
to include recessive phenomena as a case study, we assume also condition (g0).
In such a way, we are lead to equation (Eλ,µ). We notice that, for λ = µ = 1/d
and c = 0, this gives the one-dimensional version of the elliptic PDE in (1.2).

We are interested in periodically changes in genotype within a population as
a function of spatial location. Thus we assume that a(x) is P -periodic (for some
P > 0) and we seek non-constant positive solutions of equation (Eλ,µ) (in the
Carathéodory sense, see [29, Section I.5]) satisfying periodic boundary conditions

u(0) = u(P ), u′(0) = u′(P ).

These models are appropriate in the case of populations living in circular habitats
(e.g., around a lake or along the shore of an island), as well as for ring species,
for instance, around the arctic.

To state our main results, we introduce the following condition on the weight
function a(x) that we assume henceforth:
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(a∗) there exist m ≥ 1 non-empty closed intervals I+
1 , . . . , I

+
m separated by m

non-empty closed intervals I−1 , . . . , I
−
m such that

m⋃
i=1

I+
i ∪

m⋃
i=1

I−i = [0, P ],

and
a(x) � 0 on I+

i , a(x) ≺ 0 on I−i .
In the above condition, the symbol � (respectively, ≺) means that a(x) ≥ 0
(respectively, a(x) ≤ 0), with a(x) 6≡ 0. We also define

µ#(λ) := λ

∫ P
0
a+(x) dx∫ P

0
a−(x) dx

(1.4)

and notice that
∫ P

0
aλ,µ(x) dx < 0 if and only if µ > µ#(λ).

With this notation, our first result reads as follows.

Theorem 1.1. Let c ∈ R and let a : R → R be a P -periodic locally integrable
function satisfying (a∗). Let g : [0, 1]→ R be a continuously differentiable function
satisfying (g∗) and (g0). Then, there exists λ∗ > 0 such that for every λ > λ∗

and for every µ > µ#(λ) equation (Eλ,µ) has at least two non-constant positive
P -periodic solutions.

More precisely, fixed an arbitrary constant ρ ∈ ]0, 1[ there exists λ∗ =
λ∗(ρ) > 0 such that for every λ > λ∗ and for every µ > µ#(λ) there exist
two positive P -periodic solutions us(x) and u`(x) to (Eλ,µ) such that

0 < ‖us‖∞ < ρ < ‖u`‖∞ < 1.

Let us notice that, when
∫ P

0
a(x) dx < 0, an application of Theorem 1.1

with µ = λ provides two non-constant positive P -periodic solutions of the one-
parameter equation

u′′ + cu′ + λa(x)g(u) = 0, (1.5)
for λ > 0 sufficiently large (see Corollary 3.1). When c = 0, this result can thus
be interpreted as a periodic version of the two-solution theorem given in [36,
Theorem 2.9] for the Neumann boundary value problem (indeed, λ = 1/d large
implies d small). It is remarkable, however, that the same result holds even in
the non-Hamiltonian case c 6= 0.

The second, and main, part of our investigation is focused on the appearance
of high multiplicity phenomena for solutions of (Eλ,µ). In this regard, the fact
that the weight function aλ,µ(x) defined in (1.3) depends on two parameters λ
and µ plays a crucial role: indeed, high multiplicity of periodic solutions will be
proved to arise when λ > λ∗ is fixed (where λ∗ is the constant already given by
Theorem 1.1) and µ is sufficiently large (typically, much larger than the constant
µ#(λ) defined in (1.4)).

To state our result precisely, we introduce the condition

(g1) lim sup
u→1−

g(u)

1− u
< +∞
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and notice that it is satisfied whenever g(u) is continuously differentiable in a
left neighborhood of u = 1. To complement Theorem 1.1 we have the following
result. We remark that an analogous result is also valid if Dirichlet or Neumann
boundary conditions are considered (see Section 6.2).

Theorem 1.2. Let c ∈ R and let a : R → R be a P -periodic locally integrable
function satisfying (a∗). Let g : [0, 1] → R be a continuous function satisfying
(g∗), (g0) and (g1). Then, there exists λ∗ > 0 such that for every λ > λ∗ there
exists µ∗(λ) > 0 such that for every µ > µ∗(λ) equation (Eλ,µ) has at least 3m−1
non-constant positive P -periodic solutions.

More precisely, fixed an arbitrary constant ρ ∈ ]0, 1[ there exists λ∗ =
λ∗(ρ) > 0 such that for every λ > λ∗ there exist two constants r,R with 0 <
r < ρ < R < 1 and µ∗(λ) = µ∗(λ, r,R) > 0 such that for every µ > µ∗(λ) and
for every finite string S = (S1, . . . ,Sm) ∈ {0, 1, 2}m, with S 6= (0, . . . , 0), there
exists at least one positive P -periodic solution uS(x) of (Eλ,µ) such that
• maxx∈I+i

uS(x) < r, if Si = 0;
• r < maxx∈I+i

uS(x) < ρ, if Si = 1;
• ρ < maxx∈I+i

uS(x) < R, if Si = 2;

for every i = 1, . . . ,m.

Let us notice that the number of solutions provided by Theorem 1.2 is
strongly related with the nodal behavior of the weight function aλ,µ(x): the larger
the number of nodal domains of the weight function, m, the greater the number
of solutions obtained, 3m−1. Observe also that the number 3m−1 comes from the
possibility of “coding” the solutions via their behavior in each interval of positivity
I+
i : “very small” (Si = 0), “small” (Si = 1) or “large” (Si = 2). We mention
that the same type of multiplicity pattern also emerges in a different context,
namely for equation (Eλ,µ) with c = 0 and a nonlinear term g : [0,+∞[→ [0,+∞[
satisfying (g0) and having sublinear growth at infinity, that is, g(u)/u → 0 for
u→ +∞ (see [11]).

The possibility of providing, in the context of indefinite boundary value
problems, high multiplicity results by playing with the nodal behavior of the
weight function was first suggested in [26]; therein, an interesting analogy was
proposed with the papers [14, 15], giving, in the PDE setting, multiplicity of solu-
tions depending on the shape of the domain. Later on, along this line of research,
several contributions followed [5, 6, 7, 11, 19, 20, 21, 22, 24, 25]. In particular,
dealing with equation (Eλ,µ), with c = 0 and g(u) a Lipschitz continuous function
satisfying (g∗) and (g0), the existence of 8 = 32 − 1 positive solutions for both
the Dirichlet and the Neumann boundary value problem was previously proved in
[19], for a weight function a(x) with m = 2 intervals of positivity. Therefore, The-
orem 1.2 extends the result therein to the general case m ≥ 2 and to a wider class
of boundary conditions, including periodic ones, possibly in the non-Hamiltonian
case c 6= 0. It is worth noticing that this was explicitly raised as an open problem
in [19, Conjecture 2]; let us stress however that the shooting arguments employed
in [19] by no means can be used to investigate the periodic problem, and in the
present paper we rely on a completely different approach.
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Our last result concerns the dynamics of equation (Eλ,µ) on the whole real
line. Precisely, having defined the intervals

I+
i,` := I+

i + `P, i = 1, . . . ,m, ` ∈ Z,

we provide globally defined positive solutions of (Eλ,µ), whose behavior in each
of the above intervals can be coded, as in Theorem 1.2, by a bi-infinite (possibly
non-periodic) sequence S ∈ {0, 1, 2}Z. This is a picture of symbolic dynamics, and
equation (Eλ,µ) is said to exhibit chaos. The precise statement is the following.

Theorem 1.3. Let c ∈ R and let a : R→ R be a locally integrable periodic function
of minimal period P > 0 satisfying (a∗). Let g : [0, 1] → R be a continuous
function satisfying (g∗), (g0) and (g1). Then, fixed an arbitrary constant ρ ∈
]0, 1[ there exists λ∗ = λ∗(ρ) > 0 such that for every λ > λ∗ there exist two
constants r and R with 0 < r < ρ < R < 1, and µ∗(λ) = µ∗(λ, r,R) > 0
such that for every µ > µ∗(λ) the following holds: given any two-sided sequence
S = (Sj)j∈Z ∈ {0, 1, 2}Z which is not identically zero, there exists at least one
positive solution uS(x) of (Eλ,µ) such that
• maxx∈I+i,`

uS(x) < r, if Si+`m = 0;
• r < maxx∈I+i,`

uS(x) < ρ, if Si+`m = 1;
• ρ < maxx∈I+i,`

uS(x) < R, if Si+`m = 2;

for every i = 1, . . . ,m and ` ∈ Z. In particular, if the sequence S is km-periodic
for some integer k ≥ 1, there exists at least a positive kP -periodic solution uS(x)
of (Eλ,µ) satisfying the above properties.

For the proofs of Theorem 1.1 and Theorem 1.2, we adopt a functional ana-
lytic approach based on topological degree theory in Banach spaces (cf. [21] and
the subsequent papers [10, 11, 22]). In particular, we follow the general strategies
developed in [10, 11], dealing with a nonlinear term g : [0,+∞[→ [0,+∞[ satis-
fying (g0) and having sublinear growth at infinity. As already mentioned, these
(super-sublinear) nonlinearities have similar features with respect to logistic-type
nonlinearities considered in the present paper. However, while in the former case
it is often possible to develop dual arguments for small/large solutions, here the
presence of the constant solution u ≡ 1 leads to an “asymmetric” situation which
requires completely new arguments. An important feature of this method of proof
is that the estimates leading to the constant λ∗ and µ∗(λ) are fully explicit, de-
pending only on the local behavior of the weight function a(x) but not on the
length of the periodicity interval. As a consequence, one can prove Theorem 1.3
via an approximation argument.

The paper is structured as follows. In Section 2, we describe the abstract
degree setting and we prove some technical estimates on the solutions of (Eλ,µ)
(and of some related equations). Based on this, in Section 3 and Section 4, we
give the proofs of Theorem 1.1 and Theorem 1.2, respectively. The proof of The-
orem 1.3 is then presented, together with some comments about the existence of
subharmonic solutions, in Section 5. The paper ends with Section 6, discussing
some related results: subharmonic solutions via the Poincaré–Birkhoff theorem,
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Dirichlet/Neumann boundary value problems, stability issues, and an asymptotic
analysis of the solutions for µ→ +∞.

2. Abstract degree setting and technical lemmas
The aim of this section is to present the main tools used in the proofs of our
theorems as well as some preliminary technical lemmas.

Before doing this, we introduce the following notation employed throughout
the paper:

I+
i = [σi, τi], I−i = [τi, σi+1], i = 1, . . . ,m, (2.1)

where σi and τi are suitable points such that

0 = σ1 < τ1 < σ2 < τ2 < . . . < τm−1 < σm < τm < σm+1 = P.

Notice that, due to the P -periodicity, we have assumed without loss of generality
that 0 ∈ I+

1 (and, thus, P ∈ I−m). We also stress that, in dealing with the above
intervals, a cyclic convention will be adopted. For example, we will freely write
expressions like I−i−1 ∪ I

+
i ∪ I

−
i , where, if i = 1, we agree that the interval I−0

means the P -shifted interval I−m − P . A similar remark applies for instance for
I+
i ∪ I

−
i ∪ I

+
i+1 when i = m and, in such a case, I+

m+1 = I+
1 + P . This is not

restrictive since the weight function a(x) is P -periodic.

2.1. Coincidence degree framework
In this section we recall Mawhin’s coincidence degree theory (cf. [23, 37, 38]) and
we present two lemmas for the computation of the degree (cf. [11]).

First of all, we remark that solving the P -periodic problem associated with
(Eλ,µ) is equivalent to looking for solutions u(x) of (Eλ,µ) defined on [0, P ] and
such that u(0) = u(P ) and u′(0) = u′(P ). Accordingly, let X := C([0, P ]) be
the Banach space of continuous functions u : [0, P ] → R, endowed with the sup-
norm ‖u‖∞ := maxx∈[0,P ] |u(x)|, and let Z := L1(0, P ) be the Banach space
of integrable functions v : [0, P ] → R, endowed with the L1-norm ‖v‖L1(0,P ) :=∫ P

0
|v(x)|dx. We define the linear Fredholm map of index zero L(u) := −u′′− cu′

on domL :=
{
u ∈ W 2,1(0, P ) : u(0) = u(P ), u′(0) = u′(P )

}
⊆ X. We also

introduce the L1-Carathéodory function

fλ,µ(x, u) :=


−u, if u ≤ 0,
aλ,µ(x)g(u), if u ∈ [0, 1],

0, if u ≥ 1,

and we denote by Nλ,µ : X → Z the Nemytskii operator induced by the function
fλ,µ, namely

(Nλ,µu)(x) := fλ,µ(x, u(x)), x ∈ [0, P ].

The coincidence degree theory ensures that the P -periodic problem associ-
ated with

u′′ + cu′ + fλ,µ(x, u) = 0 (2.2)
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is equivalent to the coincidence equation

Lu = Nλ,µu, u ∈ domL,

or to the fixed point problem

u = Φλ,µu := Πu+QNλ,µu+KΠ(Id−Q)Nλ,µu, u ∈ X,
where Π: X → kerL ∼= R, Q : Z → cokerL ∼= Z/ImL ∼= R are two projections,
and KΠ : ImL→ domL ∩ ker Π is the right inverse of L (cf. [23, 37, 38]).

In this framework, if Ω ⊆ X is an open and bounded set such that

Lu 6= Nλ,µu, for all u ∈ ∂Ω ∩ domL,

the coincidence degree DL(L−Nλ,µ,Ω) of L and Nλ,µ in Ω is defined as

DL(L−Nλ,µ,Ω) := degLS(Id− Φλ,µ,Ω, 0)

and it satisfies the standard properties of the topological degree, such as additiv-
ity, excision, homotopic invariance.

Our goal is to construct open and bounded sets Λ ⊆ X such that DL(L −
Nλ,µ,Λ) 6= 0. By the existence property of the degree, this implies that there
exists u ∈ Λ ∩ domL such that Lu = Nλ,µu. Therefore, u(x) is a P -periodic
solution of (2.2). To obtain a P -periodic solution of (Eλ,µ), we further need to
have

0 ≤ u(x) ≤ 1, for all x ∈ [0, P ].
The first inequality follows from a simple convexity argument (the so-called max-
imum principle). Indeed, if x0 ∈ [0, P ] is such that u(x0) = minx∈[0,P ] u(x) < 0,
then from equation (2.2) we obtain u′′(x) < 0 for a.e. x in a neighborhood of
x0, a contradiction. As for the second inequality, it will be a consequence of the
construction of Λ, indeed we will take Λ ⊆ {u ∈ X : ‖u‖∞ < 1}, so that u(x) < 1
for all x ∈ [0, P ] (incidentally, notice that this prevents u(x) to be the constant
solution u ≡ 1).

To construct the sets Λ as above, we need to introduce some auxiliary sets
where we will compute the degree. Given three constants r, ρ,R with 0 < r <
ρ < R < 1, for any pair of subsets of indices I,J ⊆ {1, . . . ,m} (possibly empty)
with I ∩ J = ∅, we define the open and bounded set

ΩI,J(r,ρ,R) :=

u ∈ X : ‖u‖∞ < 1,

maxI+i
|u| < r, i ∈ {1, . . . ,m} \ (I ∪ J )

maxI+i
|u| < ρ, i ∈ I

maxI+i
|u| < R, i ∈ J

 .

With this notation, the following lemmas hold.

Lemma 2.1. Let c ∈ R and let a : R→ R be a P -periodic locally integrable function
satisfying (a∗). Let g : [0, 1] → R be a continuous function satisfying (g∗). Let
I 6= ∅ and λ, µ > 0. Assume that there exists v ∈ L1(0, P ), with v(x) � 0 on
[0, P ] and v ≡ 0 on

⋃
i I
−
i , such that the following properties hold.

(H1) If α ≥ 0, then any P -periodic solution u(x) of

u′′ + cu′ + aλ,µ(x)g(u) + αv(x) = 0, (2.3)

with 0 ≤ u(x) ≤ R for all x ∈ [0, P ], satisfies
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• maxx∈I+i
u(x) 6= r, if i /∈ I ∪ J ;

• maxx∈I+i
u(x) 6= ρ, if i ∈ I;

• maxx∈I+i
u(x) 6= R, if i ∈ J .

(H2) There exists α0 ≥ 0 such that equation (2.3), with α = α0, does not
possess any non-negative P -periodic solution u(x) with u(x) ≤ ρ, for all
x ∈

⋃
i∈I I

+
i .

Then, it holds that DL

(
L−Nλ,µ,ΩI,J(r,ρ,R)

)
= 0.

Lemma 2.2. Let c ∈ R and let a : R→ R be a P -periodic locally integrable function
satisfying (a∗). Let g : [0, 1] → R be a continuous function satisfying (g∗). Let
λ > 0 and µ > µ#(λ). Assume the following property.

(H3) If ϑ ∈ ]0, 1], then any P -periodic solution u(x) of

u′′ + cu′ + ϑaλ,µ(x)g(u) = 0, (2.4)

with 0 ≤ u(x) ≤ R for all x ∈ [0, P ], satisfies
• maxx∈I+i

u(x) 6= r, if i /∈ J ;
• maxx∈I+i

u(x) 6= R, if i ∈ J .

Then, it holds that DL

(
L−Nλ,µ,Ω∅,J(r,ρ,R)

)
= 1.

The proofs of Lemma 2.1 and Lemma 2.2 follow the argument of the ones
of [11, Lemma 3.1] and [11, Lemma 3.2], respectively (even with some simplifica-
tions, due to the fact that the sets considered in the present paper are bounded,
differently from the case treated in [11]). We point out that in [11] only the case
c = 0 was treated; however, the presence of the term cu′ does not cause any
additional difficulties, after having observed that the following property holds.

If u(x) is a non-negative solution of either (2.3) or (2.4) then

max
x∈I−i

u(x) = max
x∈∂I−i

u(x). (2.5)

When c = 0, the above property follows straightforwardly from a convexity
argument. Instead, in the present setting it can be obtained by writing equa-
tions (2.3) and (2.4) in the form (ecxu′)′ + ecx(aλ,µ(x)g(u) + αv(x)) = 0 and
(ecxu′)′ + ϑecxaλ,µ(x)g(u) = 0 and then arguing as in [22, Remark 3.4].

We notice that, for d ∈ ]0, 1[, by taking either I = {1, . . . ,m} and J = ∅ in
Lemma 2.1 or I = J = ∅ in Lemma 2.2, we can evaluate the degree on the sets
of the following type{

u ∈ X : ‖u‖∞ < 1, maxI+i
|u| < d, i ∈ {1, . . . ,m}

}
.

An application of property (2.5) together with the excision property of the degree
allows us to compute the degree on the open ball Bd ⊆ X of center zero and radius
d > 0. More precisely, the following corollaries can be proved.

Corollary 2.1. Let c ∈ R and let a : R → R be a P -periodic locally integrable
function satisfying (a∗). Let g : [0, 1]→ R be a continuous function satisfying (g∗).
Let I 6= ∅ and λ, µ > 0. Let d ∈ ]0, 1[ and assume that there exists v ∈ L1(0, P ),
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with v(x) � 0 on [0, P ] and v ≡ 0 on
⋃
i I
−
i , such that the following properties

hold.
(H̃1) If α ≥ 0, then any non-negative P -periodic solution u(x) of (2.3) satisfies

‖u‖∞ 6= d.
(H̃2) There exists α0 ≥ 0 such that equation (2.3), with α = α0, does not possess

any non-negative P -periodic solution u(x) with ‖u‖∞ ≤ d.
Then, it holds that DL

(
L−Nλ,µ, Bd

)
= 0.

Corollary 2.2. Let c ∈ R and let a : R → R be a P -periodic locally integrable
function satisfying (a∗). Let g : [0, 1] → R be a continuous function satisfying
(g∗). Let λ > 0 and µ > µ#(λ). Let d ∈ ]0, 1[ and assume that the following
property holds.

(H̃3) If ϑ ∈ ]0, 1], then any non-negative P -periodic solution u(x) of (2.4) satisfies
‖u‖∞ 6= d.

Then, it holds that DL

(
L−Nλ,µ, Bd

)
= 1.

2.2. Finding the constant λ∗

In the following lemma we provide the constant λ∗ = λ∗(ρ) that appears in all
our main results.

Lemma 2.3. Let c ∈ R and let a : R→ R be a P -periodic locally integrable function
satisfying (a∗). Let g : [0, 1]→ R be a continuous function satisfying (g∗). Then,
for every ρ ∈ ]0, 1[, there exists λ∗ = λ∗(ρ) > 0 such that, for every λ > λ∗,
α ≥ 0, and i ∈ {1, . . . ,m}, there are no non-negative solutions u(x) of

u′′ + cu′ + λa+(x)g(u) + α = 0, (2.6)

with u(x) defined for all x ∈ I+
i and such that maxx∈I+i

u(x) = ρ.

The proof is essentially the same as in [10, Section 3.1]. However, we give the
details for reader’s convenience and since we need to slightly refine the estimates.

Proof. We fix ε > 0 such that ε < (τi − σi)/2 and
∫ τi−ε
σi+ε

a+(x) dx > 0, for every
i ∈ {1, . . . ,m}. Thus the quantity

νε := min
i=1,...,m

∫ τi−ε

σi+ε

a+(x) dx

is well defined and positive.
Let ρ > 0 be fixed and consider α ≥ 0 and i ∈ {1, . . . ,m}. Suppose that

u(x) is a non-negative solution of (2.6) defined on I+
i = [σi, τi] and such that

maxx∈I+i
u(x) = ρ.

We claim that

|u′(x)| ≤ u(x)

ε
e|c||I

+
i |, for all x ∈ [σi + ε, τi − ε], (2.7)

and that there exists δi ∈ ]0, 1[ (depending only on ε, c, and |I+
i |) such that

min
x∈[σi+ε,τi−ε]

u(x) ≥ δiρ. (2.8)
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Once we prove (2.7) and (2.8), we can define

η = η(ρ) := min
{
g(u) : u ∈ [δiρ, ρ]

}
and

λ∗ = λ∗(ρ) := max
i=1,...,m

ρ
(
ε|c|+ 2e|c||I

+
i |
)

εη
∫ τi−ε
σi+ε

a(x) dx
. (2.9)

Then, by integrating equation (2.6) on [σi+ε, τi−ε] and using (2.7) (for x = σi+ε
and x = τi − ε), we obtain

λη

∫ τi−ε

σi+ε

a(x) dx ≤ λ
∫ τi−ε

σi+ε

a(x)g(u(x)) dx

= u′(σi + ε)− u′(τi − ε) + c
(
u(σi + ε)− u(τi − ε)

)
− α (τi − ε− σi − ε)

≤ 2
ρ

ε
e|c||I

+
i | + |c|ρ.

Therefore, non-negative P -periodic solutions u(x) of (2.6) with maxx∈I u(x) = ρ
can exist only for λ ≤ λ∗. This proves the lemma.
Proving estimate (2.7). Since (2.6) is equivalent to (ecxu′)′ + ecx(λa+(x)g(u) +
α) = 0, we observe that the map x 7→ ecxu′(x) is non-increasing on I+

i . Let us
fix x ∈ [σi + ε, τi− ε]. If u′(x) = 0 then the estimates is obvious. Otherwise, from
u′(x) > 0 and by using the monotonicity of the map x 7→ ecxu′(x), we have that

u′(ξ) ≥ u′(x)ec(x−ξ), for all ξ ∈ [σi, x].

By integrating the above inequality we obtain

u(x) ≥ u(x)− u(σi) ≥ u′(x)e−|c|(x−σi)(x− σi) ≥ εu′(x)e−|c||I
+
i |

that implies (2.7). The case u′(x) < 0 is analogous.
Proving estimate (2.8). Let x0 ∈ I+

i be such that u(x0) = ρ and observe that
u′(x0) = 0, if σi < x0 < τi, while u′(x0) ≤ 0, if x0 = σi, and u′(x0) ≥ 0, if x0 = τi.
If x∗ ∈ [σi + ε, τi − ε] is such that u(x∗) = minx∈[σi+ε,τi−ε] u(x), from (2.7) we
obtain that

|u′(x∗)| ≤
u(x∗)

ε
e|c||I

+
i |. (2.10)

On the other hand, by the monotonicity of the function x 7→ ecxu′(x) in [σi, τi],

u′(ξ)ecξ ≥ u′(x∗)ecx∗ , for all ξ ∈ [σi, x∗], (2.11)

and
u′(ξ)ecξ ≤ u′(x∗)ecx∗ , for all ξ ∈ [x∗, τi]. (2.12)

From the properties about u′(x0), we have that if x0 > x∗, then u′(x0) ≥ 0 and
so u′(x∗) ≥ 0. Similarly, if x0 < x∗, then u′(x0) ≤ 0 and so u′(x∗) ≤ 0. The case
x∗ = x0 is trivial. As a consequence we have either

σi ≤ x0 < x∗ ∈ [σi+ε, τi−ε], u(x0) = ρ, u′(ξ) ≤ 0, for all ξ ∈ [x0, x∗], (2.13)

or

τi ≥ x0 > x∗ ∈ [σi+ε, τi−ε], u(x0) = ρ, u′(ξ) ≥ 0, for all ξ ∈ [x∗, x0]. (2.14)
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When (2.13) holds, from (2.11) we have −u′(ξ) ≤ −u′(x∗)ec(x∗−ξ) for all ξ ∈
[x0, x∗]. An integration of the previous inequality on [x0, x∗] and an application
of (2.10) lead to

ρ− u(x∗) ≤ |u′(x∗)| e|c||I
+
i |(x∗ − x0) ≤ u(x∗)

ε
e2|c||I+i ||I+

i |.

Then, by fixing
δi :=

ε

ε+ e2|c||I+i ||I+
i |

we have (2.8). The same estimate follows in the case of (2.14), by using (2.12)
and integrating on [x∗, x0]. �

2.3. Some estimates for small solutions
The following lemma gives a lower bound for positive T -periodic solutions of (2.4)
that will be exploited in the proof of the existence result in Theorem 1.1.

Lemma 2.4. Let c ∈ R and let a : R → R be a P -periodic locally integrable func-
tion satisfying (a∗). Let g : [0, 1] → R be a continuously differentiable function
satisfying (g∗) and g′(0) = 0. Let λ > 0 and µ > µ#(λ). Then, there exists
r0 ∈ ]0, 1[ such that for every ϑ ∈ ]0, 1], every non-negative P -periodic solution
u(x) of (2.4) with ‖u‖∞ ≤ r0 satisfies u ≡ 0.

Proof. Let M > e|c|P ‖a‖L1(0,P ). By contradiction, we assume that there exists a
sequence (un(x))n of non-negative P -periodic solutions of (2.4) for ϑ = ϑn ∈ ]0, 1]
satisfying 0 < ‖un‖∞ → 0. We perform the change of variable

zn(x) :=
u′n(x)

ϑng(un(x))
, x ∈ R. (2.15)

An easy computation shows that

z′n(x) + czn(x) + ϑng
′(un(x))z2

n(x) + aλ,µ(x) = 0. (2.16)

We claim that
‖zn‖∞ ≤M.

We suppose by contradiction that this is not true. Then, recalling the fact that
zn(x) vanishes at some point x̃n ∈ [0, P ], we can find a maximal interval Jn ⊆
[0, P ] either of the form [x̃n, x̂n] or of the form [x̂n, x̃n], such that |zn(x)| ≤M for
all x ∈ Jn and |zn(x)| > M for some x /∈ Jn. By the maximality of the interval
Jn, we also know that |zn(x̂n)| = M . Rewriting (2.16) as(

ec(x−x̂n)zn(x)
)′

+ ec(x−x̂n)
(
ϑng

′(un(x))z2
n(x) + aλ,µ(x)

)
= 0,

an integration on Jn gives

zn(x̂n) = −
∫
Jn

(
ec(x−x̂n)

(
ϑng

′(un(x))z2
n(x) + aλ,µ(x)

))
dx

from which

M = |zn(x̂n)| ≤ e|c|P
(

sup
x∈[0,P ]

|g′(un(x))|PM2 + ‖aλ,µ‖L1(0,P )

)
.
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Passing to the limit as n → ∞ and using g′(0) = 0 we thus obtain M ≤
e|c|P ‖aλ,µ‖L1(0,P ), contradicting the choice of M .

Now, we integrate (2.16) on [0, P ] to obtain

0 < −
∫ P

0

aλ,µ(x) dx ≤ sup
x∈[0,P ]

|g′(un(x))|PM2,

and so a contradiction is reached using the fact that g′(u) is continuous and
g′(0) = 0. �

The next lemma gives us some estimates for positive solutions of (2.4) which
will be used to prove the multiplicity result in Theorem 1.2. To state it, let us
introduce the following notation. For any constant d > 0, we set

ζ(d) := max
d
2≤u≤d

g(u)

u
, γ(d) := min

d
2≤u≤d

g(u)

u
.

Furthermore, recalling (a∗) and the positions in (2.1), for all i ∈ {1, . . . ,m}, we
set

Ar
i(x) :=

∫ x

τi

a−(ξ) dξ, Al
i(x) :=

∫ σi+1

x

a−(ξ) dξ, x ∈ I−i . (2.17)

Lemma 2.5. Let c ∈ R and let a : R→ R be a P -periodic locally integrable function
satisfying (a∗). Let g : [0, 1]→ R be a continuous function satisfying (g∗) and (g0).
Let λ > 0. Then, there exists r̄ ∈ ]0, 1[ such that for every r ∈ ]0, r̄], for every
ϑ ∈ ]0, 1], and for every µ > 0, if u(x) is a non-negative solution of (2.4) defined
in I−i−1 ∪ I

+
i ∪ I

−
i for some i ∈ {1, . . . ,m} with maxx∈I+i

u(x) = r, the following
hold:
• if u′(σi) ≥ 0, then

u(σi+1) ≥ r
(

1 +
ϑ

2

(
µγ(r)‖Ar

i‖L1(I−i )e
−|c||I−i | − 1

))
,

and

u′(σi+1) ≥ ϑr
(

1

2
µγ(r)‖a‖L1(I−i )e

−|c||I−i |

− λ‖a‖L1(I+i )ζ(r)e|c||I
+
i ∪I

−
i |
)

;

• if u′(τi) ≤ 0, then

u(τi−1) ≥ r
(

1 +
ϑ

2

(
µγ(r)‖Al

i−1‖L1(I−i−1)e
−|c||I−i−1| − 1

))
,

and

u′(τi−1) ≤ −ϑr
(

1

2
µγ(r)‖a‖L1(I−i−1)e

−|c||I−i−1|

− λ‖a‖L1(I+i )ζ(r)e|c||I
−
i−1∪I

+
i |
)
.
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Proof. From condition (g0) we can fix a constant r̄ ∈ ]0, 1[ such that for every
r ∈ ]0, r̄] it holds that

ζ(r) <
1

2λ max
i=1,...,m

e|c||I
−
i−1∪I

+
i ∪I

−
i ||I−i−1 ∪ I

+
i ∪ I

−
i |‖a‖L1(I+i )

. (2.18)

We give the proof when u′(σi) ≥ 0 (the case u′(τi) ≤ 0 follows from anal-
ogous arguments). We divide the arguments into two parts: in the first one, we
provide some estimates for u(τi) and u′(τi), in the second one, we obtain the
inequalities on u(σi+1) and u′(σi+1).
Step 1. Let x̂i ∈ I+

i be such that

u(x̂i) = max
t∈I+i

u(x) = r.

We notice that if σi ≤ x̂i < τi, then u′(x̂i) = 0 (since u′(σi) ≥ 0). Otherwise, if
x̂i = τi, then u′(x̂i) ≥ 0.

Suppose first that u′(x̂i) = 0. Let [s1, s2] ⊆ I+
i be the maximal closed

interval containing x̂i and such that u(x) ≥ r/2 for all x ∈ [s1, s2]. We claim that
[s1, s2] = I+

i . From(
ecxu′(x)

)′
= −ϑλa+(x)g(u(x))ecx, x ∈ I+

i ,

integrating between x̂i and x and using u′(x̂i) = 0, we obtain

u′(x) = −ϑλ
∫ x

x̂i

a+(ξ)g(u(ξ))ec(ξ−x) dξ, for all x ∈ I+
i .

Then,
|u′(x)| ≤ ϑλ‖a‖L1(I+i )ζ(r)re|c||I

+
i |, for all x ∈ [s1, s2],

and

u(x) = u(x̂i) +

∫ x

x̂i

u′(ξ) dξ

≥ r
(

1− λ‖a‖L1(I+i )ζ(r)e|c||I
+
i ||I+

i |
)
>
r

2
, for all x ∈ [s1, s2].

This inequality, together with the maximality of [s1, s2], implies that [s1, s2] = I+
i .

Hence
u′(x) ≥ −ϑλ‖a‖L1(I+i )ζ(r)re|c||I

+
i |, for all x ∈ I+

i , (2.19)

implying
u′(τi) ≥ −ϑλ‖a‖L1(I+i )ζ(r)re|c||I

+
i |. (2.20)

Furthermore, by integrating (2.19) on [x̂i, τi], we obtain

u(τi) ≥ r
(
1− ϑλ‖a‖L1(I+i )ζ(r)e|c||I

+
i ||I+

i |
)
. (2.21)

On the other hand, if we suppose that x̂i = τi and u′(x̂i) > 0, we have

u(τi) = r ≥ r
(
1− ϑλ‖a‖L1(I+i )ζ(r)e|c||I

+
i ||I+

i |
)

and
u′(τi) > 0 ≥ −ϑλ‖a‖L1(I+i )ζ(r)re|c||I

+
i |.
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Thus, in any case, (2.20) and (2.21) hold, and so we can proceed with the second
part of the proof.
Step 2. We consider the interval I−i = [τi, σi+1]. Since the map x 7→ ecxu′(x) is
non-decreasing in I−i , from (2.20) we have

u′(x) ≥ ec(τi−x)u′(τi) ≥ −ϑλ‖a‖L1(I+i )ζ(r)re|c||I
+
i ∪I

−
i |, for all x ∈ I−i .

Therefore, integrating on [τi, x] and using (2.21), we have

u(x) = u(τi) +

∫ x

τi

u′(ξ) dξ (2.22)

≥ r
(

1− ϑλ‖a‖L1(I+i )ζ(r)e|c||I
+
i ||I+

i | − ϑλ‖a‖L1(I+i )ζ(r)e|c||I
+
i ∪I

−
i ||I−i |

)
≥ r
(

1− λ|I+
i ∪ I

−
i |‖a‖L1(I+i )ζ(r)e|c||I

+
i ∪I

−
i |
)

≥ r
(

1− λ|I−i−1 ∪ I
+
i ∪ I

−
i |‖a‖L1(I+i )ζ(r)e|c||I

−
i−1∪I

+
i ∪I

−
i |
)

>
r

2
, for all x ∈ I−i ,

where the last inequality follows from (2.18). On the other hand, integrating(
ecxu′(x)

)′
= ϑµa−(x)g(u(x))ecx, x ∈ I−i ,

on [τi, x] and using (2.20) and (2.22), we find

u′(x) = u′(τi)e
c(τi−x) + ϑµ

∫ x

τi

a−(ξ)g(u(ξ))ec(ξ−x) dξ

≥ ϑr
(
−λ‖a‖L1(I+i )ζ(r)e|c||I

+
i ∪I

−
i | +

1

2
µγ(r)Ar

i(x)e−|c||I
−
i |
)
, for all x ∈ I−i .

In particular,

u′(σi+1) ≥ ϑr
(

1

2
µγ(r)‖a‖L1(I−i )e

−|c||I−i | − λ‖a‖L1(I+i )ζ(r)e|c||I
+
i ∪I

−
i |
)
.

Finally, a further integration and condition (2.21) provide

u(σi+1) = u(τi) +

∫ σi+1

τi

u′(x) dx

≥ r
(

1− ϑλ‖a‖L1(I+i )ζ(r)e|c||I
+
i ||I+

i |

− ϑλ‖a‖L1(I+i )ζ(r)e|c||I
+
i ∪I

−
i ||I−i |+ ϑ

1

2
µγ(r)‖Ar

i‖L1(I−i )e
−|c||I−i |

)
≥ r
(

1− ϑλ‖a‖L1(I+i )ζ(r)e|c||I
−
i−1∪I

+
i ∪I

−
i ||I−i−1 ∪ I

+
i ∪ I

−
i |

+ ϑ
1

2
µγ(r)‖Ar

i‖L1(I−i )e
−|c||I−i |

)
≥ r
(

1 +
ϑ

2

(
µγ(r)‖Ar

i‖L1(I−i )e
−|c||I−i | − 1

))
,
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where the last inequality follows from (2.18). Thus the proof is completed. �

2.4. Some estimates for large solutions
We start by introducing the following auxiliary result.

Lemma 2.6. Let c ∈ R. Let g : [0, 1]→ R be a continuous function satisfying (g∗)
and (g1). Let J ⊆ R be a closed interval and b ∈ L1(J). Then, for every ε ∈ ]0, 1[
there exists Rε = Rε(c, g, J, b) ∈ ]0, 1[ such that for every ϑ ∈ ]0, 1] and for every
non-negative solution u(x) of

u′′ + cu′ + ϑb(x)g(u) = 0,

that satisfies u(x̂) ≥ Rε and u′(x̂) = 0 for some x̂ ∈ J , it holds that

u(x) ≥ 1− ε and |u′(x)| ≤ ε, for all x ∈ J.

Proof. Given ε ∈ ]0, 1[, let us define

Rε = 1− εe−
1
2K‖b‖L1(J)+(1+2|c|)|J|.

First of all we notice that either u ≡ 1 or (1 − u(x))2 + (u′(x))2 > 0 for every
x ∈ J , due to the uniqueness of the solution of the Cauchy problem

u′′ + cu′ + ϑb(x)g(u) = 0,

u(x0) = 1,

u′(x0) = 0,

ensured by condition (g1).
In the first case the thesis follows straightforwardly. In the second case, we

compute
d

dx
log
(
(1− u(x))2 + (u′(x))2

)
=

= −2
(1− u(x))u′(x) + ϑb(x)u′(x)g(u(x)) + c(u′(x))2

(1− u(x))2 + (u′(x))2
.

From the previous equality and since by (g1) we can fix K > 0 such that g(u) ≤
K(1− u) for every u ∈ [0, 1], we deduce that∣∣∣∣ d

dx
log
(
(1− u(x))2 + (u′(x))2

)∣∣∣∣ ≤
≤ 2

(1− u(x))|u′(x)|+ |b(x)||u′(x)|g(u(x)) + |c|(u′(x))2

(1− u(x))2 + (u′(x))2

≤ 2
(1 +K|b(x)|)(1− u(x))|u′(x)|+ |c|(u′(x))2

(1− u(x))2 + (u′(x))2

≤ 1 +K|b(x)|+ 2|c|.

Hence, by an integration of the above inequality from x̂ to an arbitrary x ∈ J ,
we have

log
(1− u(x))2 + (u′(x))2

(1− u(x̂))2
≤ K‖b‖L1(J) + (1 + 2|c|)|J |.
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As a consequence, it follows that

(1− u(x))2 + (u′(x))2 ≤ (1−Rε)2eK‖b‖L1(J)+(1+2|c|)|J| = ε2,

for all x ∈ J , and so the thesis is proved. �

The following lemma gives an upper bound for positive P -periodic solutions
of (2.4) which will be used to prove the existence result in Theorem 1.1.

Lemma 2.7. Let c ∈ R and let a : R → R be a P -periodic locally integrable func-
tion satisfying (a∗). Let g : [0, 1] → R be a continuously differentiable function
satisfying (g∗). Let λ > 0 and µ > µ#(λ). Then, there exists R0 ∈ ]0, 1[ such that
for every ϑ ∈ ]0, 1], every non-negative P -periodic solution u(x) of (2.4) satisfies
‖u‖∞ < R0.

Proof. By contradiction we assume that there exists a sequence (un(x))n of non-
negative P -periodic solutions of (2.4) for ϑ = ϑn ∈ ]0, 1] such that ‖un‖∞ → 1−.

By applying Lemma 2.6 with the choice of J = [0, P ] and b(x) = aλ,µ(x),
we deduce that un(x)→ 1 uniformly in x as n→∞.

Through the change of variable introduced in (2.15) and an integration of
(2.16) on [0, P ] we have

0 >

∫ P

0

aλ,µ(x) dx = −ϑn
∫ P

0

g′(un(x))z2
n(x) dx. (2.23)

When g′(1) < 0 we deduce that g′(u) < 0 for every u in a left neighborhood of 1.
In this case, a contradiction follows from (2.23) by the uniform convergence of
un(x) to 1. When g′(1) = 0, a contradiction is reached because, by arguing as in
Lemma 2.4, the sequence (zn(x))n is uniformly bounded and g′(un(x)) converges
to 0 uniformly. �

The next lemma gives us some estimates for positive solutions of (2.4) which
will be used to prove the multiplicity result in Theorem 1.2. To state it, we recall
the definition of Ar

i(x) and Al
i(x) given in (2.17) and we introduce the further

notation
Γ(d) := max

0≤u≤d
g(u), χ(d,D) := min

d≤u≤D
g(u),

where d,D ∈ ]0, 1[ satisfy d < D.

Lemma 2.8. Let c ∈ R and let a : R→ R be a P -periodic locally integrable function
satisfying (a∗). Let g : [0, 1] → R be a continuous function satisfying (g∗) and
(g1). Let λ > 0 and d ∈ ]0, 1[. Then, there exists R̄ = R̄(d) ∈ ]d, 1[ such that for
every R ∈ [R̄, 1[, ϑ ∈ ]0, 1] and µ > 0, if u(x) is a non-negative solution of (2.4)
defined in I−i−1 ∪ I

+
i ∪ I

−
i for some i ∈ {1, . . . ,m} with maxx∈I−i−1∪I

+
i ∪I

−
i
u(x) =

maxx∈I+i
u(x) = R it holds that

u(σi+1) ≥ R+ ϑ

(
µ‖Ar

i‖L1(I−i )χ(d,R)e−|c||I
−
i |

− λ‖a‖L1(I+i )Γ(R)e|c||I
+
i ∪I

−
i ||I+

i ∪ I
−
i |
)
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and

u(τi−1) ≥ R+ ϑ

(
µ‖Al

i−1‖L1(I−i−1)χ(d,R)e−|c||I
−
i−1|

− λ‖a‖L1(I+i )Γ(R)e|c||I
−
i−1∪I

+
i |||I−i−1 ∪ I

+
i |
)
.

Proof. Given d > 0, let us take

ε =
1− d

1 + max
i=1,...,m

|I−i |e
|c||I−i |

.

We apply Lemma 2.6 with the choice of J = I+
i and b(x) = λa+(x) in order to

find the corresponding Rε,i = Rε(c, g, I
+
i , λa

+) and we set

R̄ = R̄(d) = max
i=1,...,m

Rε,i.

Notice that 1− ε > d. Therefore, since Rε,i ∈ ]1− ε, ε[, it holds that R̄ ∈ ]d, 1[.
Let R ∈ [R̄, 1[, ϑ ∈ ]0, 1] and µ > 0. Let u(x) be a non-negative solution

of (2.4) defined in I−i−1 ∪ I
+
i ∪ I

−
i for some i ∈ {1, . . . ,m} with

max
x∈I−i−1∪I

+
i ∪I

−
i

u(x) = max
t∈I+i

u(x) = R.

Let x̂i ∈ I+
i be such that u(x̂i) = maxx∈I+i

u(x) = R. We observe that
u′(x̂i) = 0, otherwise u(x) > R for some x in a neighborhood of x̂i. Lemma 2.6
applies and yields

u(x) ≥ 1− ε and |u′(x)| ≤ ε, for all x ∈ I+
i . (2.24)

We claim that
u(x) ≥ d, for all x ∈ I−i−1 ∪ I

+
i ∪ I

−
i .

The inequality in I+
i is obvious since 1 − ε > d. As for the interval I−i , since

the map x 7→ ecxu′(x) is non-decreasing, we have ecxu′(x) ≥ ecτiu′(τi), for all
x ∈ I−i . Thus, from (2.24) it follows that

|u′(x)| ≤ εe|c||I
−
i |, for all x ∈ I−i .

Then, an integration gives

u(x) = u(τi) +

∫ x

τi

u′(ξ) dξ ≥ 1− ε− ε|I−i |e
|c||I−i | ≥ d, for all x ∈ I−i ,

where the last inequality follows from the choice of ε. A similar argument applies
in the interval I−i−1 and the claim is thus proved.

Recalling that u(x̂i) = 0, we find

u′(x) = −ϑλ
∫ x

x̂i

a+(ξ)g(u(ξ))ec(ξ−x) dξ, for all x ∈ I+
i ,

implying
|u′(x)| ≤ ϑλ‖a‖L1(I+i )Γ(R)e|c||I

+
i |, for all x ∈ I+

i .
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Therefore

u(τi) = u(x̂i) +

∫ τi

x̂i

u′(ξ) dξ ≥ R− ϑλ‖a‖L1(I+i )Γ(R)e|c||I
+
i ||I+

i |.

As a consequence, in the interval I−i we have

u′(x) = u′(τi)e
c(τi−x) + ϑµ

∫ x

τi

a−(ξ)g(u(ξ))ec(ξ−x) dξ

≥ −ϑλ‖a‖L1(I+i )Γ(R)e|c||I
+
i ∪I

−
i | + ϑµAr

i(x)χ(d,R)e−|c||I
−
i |, for all x ∈ I−i .

An integration of the above inequality, together with the estimate for u(τi), finally
provides

u(σi+1) = u(τi) +

∫ σi+1

τi

u′(x) dx

≥ R− ϑλ‖a‖L1(I+i )Γ(R)e|c||I
+
i ||I+

i |

− ϑλ‖a‖L1(I+i )Γ(R)e|c||I
+
i ∪I

−
i ||I−i |+ ϑµ‖Ar

i‖L1(I−i )χ(d,R)e−|c||I
−
i |

≥ R+ ϑ

(
µ‖Ar

i‖L1(I−i )χ(d,R)e−|c||I
−
i |

− λ‖a‖L1(I+i )Γ(R)e|c||I
+
i ∪I

−
i ||I+

i ∪ I
−
i |
)

where the last inequality follows from (2.18). Thus the proof is completed. �

Remark 2.1. Lemma 2.8 will be exploited in Section 4.1, while verifying the
assumptions of Lemma 2.1 and Lemma 2.2. We stress that only the assertion on
u(σi+1) will be used. The second one plays a role in the corresponding proofs
dealing with Dirichlet or Neumann boundary conditions (see Section 6.2). C

3. Existence of two solutions

In this section we give the proof of Theorem 1.1.

Proof of Theorem 1.1. Given ρ > 0, we first apply Lemma 2.3 in order to find
the constant λ∗ = λ∗(ρ) > 0 (defined as in (2.9)). Then we fix λ > λ∗.

We claim that Corollary 2.1 applies with the choice of d = ρ and v(x) as
the indicator function 1⋃

i I
+
i

(x) of the set
⋃
i I

+
i , that is,

v(x) =

{
1, if x ∈

⋃m
i=1 I

+
i ,

0, if x ∈ [0, P ] \
⋃m
i=1 I

+
i .

First, we verify assumption (H̃1). From property (2.5), since v(x) = 0 for all
x ∈

⋃
i I
−
i , we observe that any non-negative P -periodic solution of (2.3) attains

its maximum on
⋃
i I

+
i . Then, (H̃1) follows from Lemma 2.3. As for assumption
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(H̃2), we integrate equation (2.3) on [0, P ] and pass to the absolute value in order
to obtain

α‖v‖L1(0,P ) ≤ ‖aλ,µ‖L1(0,P ) max
u∈[0,ρ]

g(u).

Therefore, (H̃2) follows for α sufficiently large. Summing up, from Corollary 2.1,
we thus obtain

DL(L−Nλ,µ, Bρ) = 0.

Now, we use Lemma 2.4 and Lemma 2.7 to fix r0 and R0 in ]0, 1[. Without
loss of generality we can assume 0 < r0 < ρ < R0 < 1. Then, Corollary 2.2
applies both with the choice of d = r0 and d = R0 (indeed, (H̃3) is trivially
satisfied). Therefore, we have

DL(L−Nλ,µ, Br0) = 1 and DL(L−Nλ,µ, BR0) = 1.

The additivity property of the coincidence degree implies

DL(L−Nλ,µ, Bρ \Br0) = −1 and DL(L−Nλ,µ, BR0
\Bρ) = 1.

As a consequence, there exist a P -periodic solution us(x) of (2.2) in Bρ \Br0 as
well as a P -periodic solution u`(x) of (2.2) in BR0\Bρ. As observed in Section 2.1,
by the maximum principle it holds that us(x) ≥ 0 and u`(x) ≥ 0 for all x ∈ [0, P ].
Moreover, we clearly have us(x) < 1 and u`(x) < 1 for all x ∈ [0, P ]. Hence, us(x)
and u`(x) are non-negative P -periodic solutions of (Eλ,µ). Since g(u) is of class C1,
the uniqueness of the constant zero solution for the Cauchy problem associated
with (Eλ,µ), implies that us(x) and u`(x) are positive P -periodic solutions of
(Eλ,µ) and the proof is concluded. �

Remark 3.1. By a careful checking of the proof, one can realize that Theorem 1.1
is still valid if g(u) is assumed to be continuously differentiable in a right neigh-
borhood of u = 0 and in a left neighborhood of u = 1. We also remark that
the assumption of differentiability near u = 0 could be removed, provided one
supposes a condition of regular oscillation, that is,

lim
u→0+

ω→1

g(ωu)

g(u)
= 1

(cf. [10, Section 4.3]). At last, we mention that, by arguing as in [10], one could
also weaken assumption (a∗), so as to cover some situations when the weight
function a(x) changes sign infinitely many times. For the sake of briefness, and
since assumption (a∗) is crucial in the proof of Theorem 1.2, we have preferred
to work in a unified simpler setting. C

We end this section by stating the following straightforward corollary, deal-
ing with the one-parameter equation (1.5).

Corollary 3.1. Let c ∈ R and let a : R → R be a P -periodic locally integrable
function satisfying (a∗) and

∫ P
0
a(x) dx < 0. Let g : [0, 1] → R be a continuously

differentiable function satisfying (g∗) and (g0). Then, there exists λ∗ > 0 (de-
pending on c, g(u) and a+(x), but not on a−(x)) such that for every λ > λ∗

equation (1.5) has at least two non-constant positive P -periodic solutions.
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4. High multiplicity of solutions

In this section we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Given ρ > 0, we first apply Lemma 2.3 in order to find
the constant λ∗ = λ∗(ρ) > 0 (defined as in (2.9)). Then we fix λ > λ∗.

We apply Lemma 2.5 to find r̄ ∈ ]0, 1[ and we fix

r ∈ ]0,min{r̄, ρ}[.

Moreover, we apply Lemma 2.8, with the choice of d = ρ, to find R̄ ∈ ]ρ, 1[ and
we fix

R ∈ [R̄, 1[.

We claim that there exists µ∗(λ) = µ∗(λ, r,R) > 0 such that for every
µ > µ∗(λ) Lemma 2.1 and Lemma 2.2 hold for any pair of subsets of indices
I,J ⊆ {1, . . . ,m} with I ∩ J = ∅. This is a long technical step of the proof and
we provide the details in Section 4.1. Once this is proved, we have that

DL

(
L−Nλ,µ,ΩI,J(r,ρ,R)

)
=

{
0, if I 6= ∅,
1, if I = ∅.

(4.1)

We define the open and bounded sets

ΛI,J(r,ρ,R) :=

u ∈ X : ‖u‖∞ < 1,

maxI+i
|u| < r, i ∈ {1, . . . ,m} \ (I ∪ J )

r < maxI+i
|u| < ρ, i ∈ I

ρ < maxI+i
|u| < R, i ∈ J


and so from (4.1) and the combinatorial argument in [11, Appendix A], we obtain
that

DL

(
L−Nλ,µ,ΛI,J(r,ρ,R)

)
= (−1)#I .

As a consequence of the existence property for the coincidence degree, we
thus obtain the existence of a P -periodic solution of (2.2) in each of these 3m sets
ΛI,J(r,ρ,R). Here, the number 3m comes from all the possible choices I and J with
I ∩J = ∅. Notice that, since the identically zero function is contained in the set
Λ∅,∅(r,ρ,R), we do not consider it in the sequel. Instead, every solution u(x) of (2.2)
in each of the other 3m − 1 sets is non-constant and, by the maximum principle,
such that u(x) ≥ 0 for all x ∈ [0, P ]. By the uniqueness of the zero solution for the
Cauchy problem associated with (2.2) (coming from condition (g0)) we have also
u(x) > 0 for all x ∈ [0, P ]. Moreover, by construction, it follows that u(x) < 1
for all x ∈ [0, P ]. Hence, u(x) is a non-constant positive P -periodic solution of
(Eλ,µ).

Summing up, for each choice of I and J with I ∩ J = ∅ 6= I ∪ J , there
exists at least one positive P -periodic solution uI,J (x) of (Eλ,µ) such that
• 0 < maxx∈I+i

uI,J (x) < r, for all i /∈ I ∪ J ;
• r < maxx∈I+i

uI,J (x) < ρ, for all i ∈ I;
• ρ < maxx∈I+i

uI,J (x) < R, for all i ∈ J .
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Finally, to achieve the conclusion of Theorem 1.2, we observe that, given any
finite string S = (S1, . . . ,Sm) ∈ {0, 1, 2}m, with S 6= (0, . . . , 0), we can establish
a one-to-one correspondence between S and the sets

I :=
{
i ∈ {1, . . . ,m} : Si = 1

}
, J :=

{
i ∈ {1, . . . ,m} : Si = 2

}
,

so that Si = 0 when i /∈ I ∪ J . This completes the proof of Theorem 1.2. �

4.1. Finding the constant µ∗(λ, r,R)

The constant µ∗(λ, r,R) is defined as

µ∗(λ, r,R) := max
{
µ(H1), µ(H3)

}
,

where µ(H1) and µ(H3) will be obtained along the arguments below (see (4.4) and
(4.7)). We stress that such constants are fully explicit, depending only on λ, r,
ρ, R, g(u) and a(x).

Checking the assumptions of Lemma 2.1. Let I,J with I 6= ∅ and define v(x)
as the indicator function of the set

⋃
i∈I I

+
i , namely

v(x) =

{
1, if x ∈

⋃
i∈I I

+
i ,

0, if x ∈ [0, P ] \
⋃
i∈I I

+
i .

Verification of (H1). Let α ≥ 0. By contradiction, we suppose that there exists a
P -periodic solution u(x) of (2.3) with 0 ≤ u(x) ≤ R, for all x ∈ [0, P ], such that
at least one of the following conditions holds:
(h1

1) there is an index i /∈ I ∪ J such that maxx∈I+i
u(x) = r;

(h1
2) there is an index i ∈ I such that maxx∈I+i

u(x) = ρ;
(h1

3) there is an index i ∈ J such that maxx∈I+i
u(x) = R.

Suppose that (h1
1) holds. Since v(x) = 0 for x ∈ I−i−1 ∪ I

+
i ∪ I

−
i , equation

(2.3) reduces to (Eλ,µ). Consider at first the case u′(σi) ≥ 0. By Lemma 2.5 (with
ϑ = 1), we have that

u(σi+1) ≥ r
(

1 +
1

2

(
µγ(r)‖Ar

i‖L1(I−i )e
−|c||I−i | − 1

))
≥ µ

2
rγ(r)‖Ar

i‖L1(I−i )e
−|c||I−i |.

Thus, taking

µ > µ̂r
i :=

2Re|c||I
−
i |

rγ(r)‖Ar
i‖L1(I−i )

, (4.2)

we obtain u(σi+1) > R, a contradiction. On the other hand, if u′(σi) < 0, using
the fact that x 7→ ecxu′(x) is non-increasing on I+

i , we have that u′(τi) < 0. In
this case, we can use the second part of Lemma 2.5 (with ϑ = 1) to reach the
contradiction u(τi−1) > R whenever

µ > µ̂l
i :=

2Re|c||I
−
i−1|

rγ(r)‖Al
i−1‖L1(I−i−1)

. (4.3)
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Now, we suppose that (h1
2) holds. In this case a contradiction is immediately

obtained by Lemma 2.3 (no assumption on µ > 0 is needed).
At last, we assume that (h1

3) holds. As for the case (h1
1) we have v(x) = 0

for x ∈ I−i−1 ∪ I
+
i ∪ I

−
i . Then we can apply Lemma 2.8 (with d = ρ and ϑ = 1) in

order to obtain

u(σi+1) ≥ R+ µ‖Ar
i‖L1(I−i )χ(ρ,R)e−|c||I

−
i |

− λ‖a‖L1(I+i )Γ(R)e|c||I
+
i ∪I

−
i ||I+

i ∪ I
−
i |.

Taking

µ > µ̌r
i :=

λ‖a‖L1(I+i )Γ(R)e|c||I
+
i ∪I

−
i ||I+

i ∪ I
−
i |

‖Ar
i‖L1(I−i )χ(ρ,R)e−|c||I

−
i |

,

we obtain u(σi+1) > R, a contradiction. Notice that, contrarily to the case (h1
1),

here it is not necessary to consider the behavior of u(x) in the interval I−i−1.
We conclude that (H1) holds for

µ > µ(H1) := max
i=1,...,m

{
µ̂r
i, µ̂

l
i, µ̌

r
i

}
. (4.4)

Verification of (H2). Let u(x) be an arbitrary non-negative P -periodic solution
of (2.3) such that u(x) ≤ ρ for all x ∈

⋃
i∈I I

+
i . We fix an index j ∈ I and observe

that on the interval I+
j equation (2.3) reads as

u′′ + cu′ + λa+(x)g(u) + α = 0.

Let ε ∈ ]0, (τj − σj)/2[. As shown along the proof of Lemma 2.3 the inequality
(2.7) holds. Then, integrating the differential equation on [σj+ε, τj−ε], we obtain

α (τj − σj − 2ε) =

= u′(σj + ε)− u′(τj − ε) + cu(σj + ε)− cu(τj − ε)− λ
∫ τj−ε

σj+ε

a+(x)g(u(x)) dx

≤ 2ρ

ε
e|c||I

+
j | + 2|c|ρ.

This yields a contradiction if α > 0 is sufficiently large. Hence (H2) is verified. �

Checking the assumptions of Lemma 2.2. Let J ⊆ {1, . . . ,m} and ϑ ∈ ]0, 1].
Verification of (H3). By contradiction, suppose that there exists a P -periodic
solution u(x) of (2.4) with 0 ≤ u(x) ≤ R for all x ∈ [0, P ], such that at least one
of the following conditions holds:
(h3

1) there is an index i /∈ J such that maxx∈I+i
u(x) = r;

(h3
2) there is an index i ∈ J such that maxx∈I+i

u(x) = R.

Suppose that (h3
1) holds. We consider at first the case u′(σi) ≥ 0. We are

going to prove that, if µ large enough, then

u(x) > r and u′(x) > 0, (4.5)

for all x ∈ [0, P ]. This clearly contradicts the P -periodicity of u(x).
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Proving (4.5) in I+
i+1. Taking µ > µ̂r

i (with µ̂r
i defined in (4.2)) then we have

µ >
e|c||I

−
i |

γ(r)‖Ar
i‖L1(I−i )

and so, from Lemma 2.5, u(σi+1) > r (as ϑ > 0). Moreover, using the estimate
on u′(σi+1) provided in Lemma 2.5, we observe that u′(σi+1) > 0 when

µ >
2λ‖a‖L1(I+i )ζ(r)e2|c||I+i ∪I

−
i |

γ(r)‖a‖L1(I−i )

. (4.6)

Integrating (2.4) on [σi+1, x] ⊆ I+
i+1 and using again Lemma 2.5, we obtain

u′(x) = u′(σi+1)ec(σi+1−x) − ϑλ
∫ x

σi+1

a+(ξ)g(u(ξ))ec(ξ−x) dξ

≥ u′(σi+1)e−|c||I
+
i+1| − ϑλ‖a‖L1(I+i+1)Γ(R)e|c||I

+
i+1|

≥ ϑr
(

1

2
µγ(r)‖a‖L1(I−i )e

−|c||I−i ∪I
+
i+1| − λ‖a‖L1(I+i )ζ(r)e|c||I

+
i ∪I

−
i ∪I

+
i+1|

− λ‖a‖L1(I+i+1)

Γ(R)

r
e|c||I

+
i+1|
)
.

Notice that the first of the above inequalities requires u′(σi+1) ≥ 0, which is
ensured by (4.6). Taking

µ > µ̃r
i :=

2λ
(
‖a‖L1(I+i )ζ(r)re|c||I

+
i ∪I

−
i ∪I

+
i+1| + ‖a‖L1(I+i+1)Γ(R)e|c||I

+
i+1|
)

γ(r)r‖a‖L1(I−i )e
−|c||I−i ∪I

+
i+1|

,

we finally obtain that

u′(x) > 0, for all x ∈ I+
i+1.

Consequently u(x) ≥ u(σi+1) > r on I+
i+1. We conclude that for

µ > max
{
µ̂r
i, µ̃

r
i

}
,

inequalities in (4.5) hold.
Proving (4.5) in I−i+1. Using the monotonicity of the map x 7→ ecxu′(x) we deduce
that u′(x) ≥ ec(τi+1−x)u′(τi+1) > 0 on I−i+1. Thus the conclusion follows, since
u(τi+1) > r.
Proving (4.5) in I+

i+2. Integrating the equation (2.4) on [τi+1, x] ⊆ I−i+1 we find

u′(x) = u′(τi+1)ec(τi+1−x) + ϑµ

∫ x

τi+1

a−(ξ)g(u(ξ))ec(ξ−x) dξ

> ϑµAr
i+1(x)χ(r,R)e−|c||I

−
i+1|, for all x ∈ I−i+1,

in particular

u′(σi+2) > ϑµ‖a‖L1(I−i+1) χ(r,R)e−|c||I
−
i+1| > 0.
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On the other hand, integrating the equation (2.4) on [σi+2, x] ⊆ I+
i+2 we find

u′(x) = u′(σi+2)ec(σi+2−x) − ϑλ
∫ x

σi+2

a+(ξ)g(u(ξ))ec(ξ−x) dξ

> ϑ
(
µ‖a‖L1(I−i+1)χ(r,R)e−|c||I

−
i+1∪I

+
i+2| − λ‖a‖L1(I+i+2)Γ(R)e|c||I

+
i+2|
)
> 0,

for all x ∈ I+
i+2, where the last inequality holds for

µ > µ∗,+i = µ∗,+i (I−i+1, I
+
i+2) :=

λ‖a‖L1(I+i+2)Γ(R)e2|c||I−i+1∪I
+
i+2|

‖a‖L1(I−i+1)χ(r,R)
.

Then the solution u(x) is increasing in I+
i+2 and hence u(x) > u(σi+2) > r on

I+
i+2. Therefore, the inequalities in (4.5) hold in I+

i+2.
Proving (4.5) in [0, P ]. This is easily achieved by repeating the argument just
described in order to cover a P -periodicity interval. This eventually requires

µ > max
i=1,...,m

µ∗,+i .

Having dealt with the case u′(σi) ≥ 0, we now assume u′(σi) < 0, which
implies (by the monotonicity of the map x 7→ ecxu′(x) in I+

i ) that u
′(τi) < 0. A

contradiction can be achieved proceeding backward. More precisely, we may use
at first Lemma 2.5 and then an inductive argument similar to the one explained
above. Conditions on µ will be replaced by the analogous inequalities

µ > µ̂l
i,

with µ̂l
i defined in (4.3),

µ > µ̃l
i :=

2λ
(
‖a‖L1(I+i )ζ(r)re|c||I

+
i−1∪I

−
i−1∪I

+
i | + ‖a‖L1(I+i−1)Γ(R)e|c||I

+
i−1|
)

γ(r)r‖a‖L1(I−i−1)e
−|c||I−i−1∪I

+
i−1|

,

and

µ > µ∗,−i = µ∗,−i (I+
i−2, I

−
i−2) :=

λ‖a‖L1(I+i−2)Γ(R)e2|c||I+i−2∪I
−
i−2|

‖a‖L1(I−i−2)χ(r,R)
.

Thus the contradiction u′(x) < 0 for all x ∈ [0, P ] can be proved for

µ > max
i=1,...,m

µ∗,−i .

Taking into account all the possible situations we conclude that the case
(h3

1) never occurs if

µ > µ
(H3)
1 := max

i=1,...,m

{
µ̂r
i, µ̂

l
i, µ̃

r
i, µ̃

l
i, µ
∗,+
i , µ∗,−i

}
.

To conclude the proof, suppose now that (h3
2) holds. Applying Lemma 2.8,

the contradiction u(σi+1) > R follows when

µ > µ̄i :=
λ‖a‖L1(I+i )Γ(R)e2|c||I+i ∪I

−
i ||I+

i ∪ I
−
i |

‖Ar
i‖L1(I−i )χ(r,R)

.
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We conclude that the case (h3
2) never occurs if

µ > µ
(H3)
2 := max

i=1,...,m
µ̄i.

Summing up, we can apply Lemma 2.2 for

µ > µ(H3) := max
{
µ

(H3)
1 , µ

(H3)
2 , µ#(λ)

}
(4.7)

and therefore formula (2.4) is verified. �

5. Globally defined solutions and symbolic dynamics
In this section we prove Theorem 1.3. Actually, we are going to give just a sketch
of the argument, which follows the same schemes of the one for the proof of [22,
Theorem 4.5]. We also remark that one could adapt to the present setting also
the discussion developed in [11, Section 6], in order to show that the existence
of non-periodic bounded solutions coded by sequences of three symbols implies
semiconjugation of a suitable map induced by (Eλ,µ) with the Bernoulli shift.

Proof of Theorem 1.3. Given ρ > 0, we fix the constants λ∗, r, R, and µ∗ as
in Theorem 1.2. The first crucial observation is that all these constants depend
(besides on g) only on the behavior of the weight function a(x) on the intervals I+

i

and I−i with i ∈ {1, . . . ,m} (and not on the length P of the periodicity interval).
As a consequence, the conclusion of Theorem 1.2 holds (with the same constants)
even if, in place of [0, P ], an interval of the type [n1P, n2P ] (with n1, n2 ∈ Z and
n1 < n2) is considered.

Let S = (Si)i∈Z ∈ {0, 1, 2}Z be an arbitrary sequence which is not identically
zero.

If S is km-periodic for some integer k ≥ 1, then an application of The-
orem 1.2 in the interval [0, kP ] ensures the existence of at least a kP -periodic
solution uS(x) of (Eλ,µ) coded by S.

If it is not the case, we approximate S with the sequence (Sn)n, where
Sn ∈ {0, 1, 2}Z is the (2n+ 1)m-periodic sequence defined as

Snj := Sj , for j = −nm+ 1, . . . , (n+ 1)m.

An application of Theorem 1.2 on the interval [−nP, (n + 1)P ] (at least for n
sufficiently large, so that Sn 6≡ 0) leads to the existence of a non-constant positive
(2n+ 1)P -periodic solution un(x) of (Eλ,µ) such that
• maxt∈I+i,`

un(x) < r, if Sj = 0 for j = i+ `m;
• r < maxt∈I+i,`

un(x) < ρ, if Sj = 1 for j = i+ `m;
• ρ < maxt∈I+i,`

un(x) < R, if Sj = 2 for j = i+ `m;

for every i = 1, . . . ,m and ` = −n, . . . , n.
A compactness argument (cf. [22, Section 4.3]) ensures the existence of a

solution ũ(x) of (Eλ,µ) defined on R and obtained as the limit of a subsequence
of un(x). Passing to the limit as n→∞, we have
• maxx∈I+i,`

ũ(x) ≤ r, if Sj = 0 for j = i+ `m;
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• r ≤ maxx∈I+i,`
ũ(x) ≤ ρ, if Sj = 1 for j = i+ `m;

• ρ ≤ maxx∈I+i,`
ũ(x) ≤ R, if Sj = 2 for j = i+ `m;

for every i = 1, . . . ,m and ` ∈ Z.
To conclude the proof we have to show that the above inequalities are strict.

This can be done using on one hand Lemma 2.3 (ensuring that maxI+i,`
un 6= ρ)

and on the other hand the arguments exploited in Section 4.1 to prove that the
alternatives (h1

1) and (h1
3) can not hold (notice that for these the periodicity is

not necessary). �

Remark 5.1. Given an integer k ≥ 2, Theorem 1.2 provides positive kP -periodic
solutions of (Eλ,µ). In this direction, it is natural to investigate whether such
solutions have kP as minimal period, namely, whether they are not `P -periodic
for any integer ` = 1, . . . , k − 1. A kP -periodic solution with this property is
usually said to be a subharmonic solution of order k (cf. [9] and [22, Section 4.1]
for additional comments and references on the subject).

Given an integer k ≥ 2, in order to produce at least a subharmonic solu-
tions of order k, it is sufficient to take the km-periodic sequence S = (Sj)j∈Z ∈
{0, 1, 2}Z given by S1 = 1 and Sj = 0 for j ∈ {2, . . . , km}. The minimality of
the period kP is a consequence of the behavior of the solution uS(x) given by S.
Following the discussion developed in [11, Section 6] and in [22, Section 4.2], one
can give an estimate for the number of subharmonic solutions of order k. Indeed,
one can define a one-to-one correspondence between the aperiodic necklaces of
length k on n colors and the non-null strings of length k on n symbols. Taking
n = 3m symbols/colors, the desired estimate is given by Witt’s formula:

Σ3m(k) =
1

k

∑
l|k

µ(l) 3
mk
l ,

where µ(·) is the Möbius function, defined on N \ {0} by µ(1) = 1, µ(l) = (−1)q

if l is the product of q distinct primes and µ(l) = 0 otherwise. We refer to [18,
Remark 4.1] for an interesting discussion on this formula. C

6. Related results and remarks
We conclude the paper with some complementary results and remarks.

6.1. Subharmonic solutions
In the context of Theorem 1.1, if we further suppose that g(u) is of class C2 in
an interval [0, ε] and satisfies g′′(u) > 0 for every u ∈ ]0, ε], then the equation

u′′ + aλ,µ(x)g(u) = 0 (6.1)

has, for every λ > λ∗ and µ > µ#(λ), positive subharmonic solutions of order k
for any integer k large enough.

This follows from [9, Theorem 3.3], after having observed that the constant
λ∗ given therein does not depend on a−(x) (actually, is obtained exactly as in
Lemma 2.3). Let us stress that such a proof is of symplectic nature, being based
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on the Poincaré–Birkhoff fixed point theorem: therefore, the assumption c = 0 is
essential. Subharmonic solutions in the case c 6= 0 can be found as in Remark 5.1
(for every integer k ≥ 1), but only for larger µ, i.e., µ > µ∗(λ).

6.2. Dirichlet and Neumann boundary conditions
A suitable variant of Theorem 1.2 is valid when equation (Eλ,µ) is coupled with
Dirichlet boundary conditions

u(0) = u(P ) = 0

or Neumann boundary conditions

u′(0) = u′(P ) = 0.

Let us recall that, in both these cases, with a standard change of variable we can
assume c = 0 (cf. [17, Appendix C]).

In this context, it is possible to consider a slightly more general sign condi-
tion, with respect to (a∗), for the L1-weight a : [0, P ]→ R. Precisely, a(x) can be
allowed to have an initial negativity interval I−0 and, if m ≥ 2 or I−0 6= ∅, to have
I−m = ∅, that is, a(x) can be non-negative in a left neighborhood of P , provided
that there exists at least one negativity interval (cf. [11, Section 7.2]).

The proofs require just minor modifications with respect to the ones given
for the periodic problem. Precisely, the appropriate abstract setting for Dirichlet
and Neumann boundary conditions is described in [11, Remark 2.1]; with this
in mind, the general strategy in Section 4 remains the same. In order to verify
the assumptions of the degree lemmas in Section 2.1, the estimates given in
Section 2.2 can still be exploited, since they are of local nature, and the boundary
condition at x = 0 and x = P can be used in place of the P -periodicity to reach
the desired contradictions. See also Figure 1 for a numerical example.

As standard corollaries, one can give multiplicity results for radially sym-
metric positive solutions of elliptic BVPs on annular domains (cf. [11, Section 7.3]
and [20, Section 3]).

6.3. Stability issues
Dealing with equation (6.1) and assuming further that g(u) is of class C2 in an
interval [0, ε] and satisfies g′′(u) > 0 for every u ∈ ]0, ε], some information about
the linear (in)stability of the solutions found in Theorem 1.1 and Theorem 1.2
can be given. Here, linear stability/instability is meant in the sense of steady
states of the corresponding parabolic problem, that is, a P -periodic solution u(x)
of (6.1) is said to be linearly stable (respectively, linearly unstable) if the principal
eigenvalue ν0 of the P -periodic problem associated with

v′′ +
(
ν + aλ,µ(x)g′(u(x))

)
v = 0

satisfies ν0 ≥ 0 (respectively, ν0 < 0), cf. [32, Definition 2.1]. The same definition
can be given when (6.1) is considered together with Dirichlet or Neumann bound-
ary conditions (of course, the principal eigenvalue is meant with respect to the
corresponding boundary conditions). It is worth mentioning that, for P -periodic
solutions, this notion of linear stability is completely unrelated with respect to
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(a) Graph of the weight term defined
as a(x) = 2 sin(2x)−max{0, sin(x)} on
[0, 2π] and a(x) = 0.2 on [2π, 8].
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(b) Graph of the nonlinear term
g(u) = u2(1− u).
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(c) Graphs of 26 = 33 − 1 positive solutions of the Neumann boundary value problem
associated with (Eλ,µ), where c = 1, a(x) is as in sub-figure (A) with P = 8 (and so
m = 3), g(u) is as in sub-figure (B), λ = 12, and µ = 80.

Figure 1. High multiplicity of positive solutions for the indefinite
Neumann boundary value problem associated with (Eλ,µ).
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the more traditional one, based on Floquet theory, arising as the linear version
of Lyapunov stability [42].

Taking into account the above discussion, one can apply [9, Lemma 4.2]
ensuring that ν0 < 0 for every positive P -periodic solution u(x) of (6.1) satisfying
‖u‖∞ < ε. Therefore, choosing ρ ∈ ]0, ε[ in Theorem 1.2, we conclude that all the
2m−1 solutions associated with the strings S with Si 6= 2 for all i = 1, . . . ,m, are
linearly unstable (recall that, by property (2.5), these solutions satisfy ‖u‖∞ < ρ).
By a careful checking of the computation in [9, Lemma 4.2], one can deduce the
same conclusion when Dirichlet/Neumann boundary conditions are taken into
account.

In the same way we can also deduce that the small solution us(x) in The-
orem 1.1 is linearly unstable: this is consistent with [36, Theorem 1.3], proving,
for the Neumann problem, that one solution is unstable (while a second one is
stable).

6.4. Asymptotic analysis
Using the arguments described in [11, Section 5] and in [22, Section 3.5], it is
possible to investigate the asymptotic behavior for µ → +∞ of the solutions
provided by Theorem 1.2 and Theorem 1.3 (with λ > λ∗ fixed). More precisely,
if {uS,µ(x)}µ>µ∗(λ) denotes a family of solutions coded by the same string S, one
can show that, up to subsequences, the following hold:
• uS,µ(x) converges to zero uniformly in all the negativity intervals of a(x);
• uS,µ(x) converges to zero uniformly in the positivity intervals I+

i,` such that
Si+`m = 0;

• uS,µ(x) converges to a positive solution of the Dirichlet problem associated
with (Eλ,µ) on the positivity intervals I+

i,` such that Si+`m ∈ {1, 2} (notice
that, from this discussion, it follows that such Dirichlet problems have at
least two positive solutions, cf. [43]).

Similarly, one can discuss the case of Dirichlet and Neumann boundary conditions
(in the Neumann case, whenever a(x) starts or ends with a positivity interval I+

i

with corresponding Si ∈ {1, 2}, then uS,µ(x) converges in such an interval to a
positive solution of a mixed Dirichlet/Neumann problem). We omit the details
for briefness.

It is worth mentioning that, for the one-parameter equation

u′′ + λa(x)g(u) = 0,

that is, equation (Eλ,µ) for λ = µ and c = 0, the asymptotic behavior of the two
positive solutions when λ→ +∞ has been carefully investigated in [41]. Roughly
speaking, the small solution us(x) converges to zero uniformly in the whole [0, P ],
while the large solution u`(x) converges to 1 (respectively, to 0) uniformly on ev-
ery compact subinterval of the interior of the positivity intervals (respectively,
negativity intervals), see [41, Theorem 1.3] for the precise statement. Of course,
this result is unrelated with the one discussed above for the two-parameter equa-
tion (Eλ,µ), since in the latter case λ is fixed (and µ → +∞). See also Figure 2
for a numerical investigation.
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(a) Graph of the “large” solution
u`(x) of the Neumann boundary value
problem associated with (Eλ,µ), where
c = 1, a(x) and g(u) are as in Figure 1
with P = π (and som = 1). Notice that∫ π
0
a(x) dx < 0. We take λ = µ ∈ {12,

15, 20, 30, 50, 100, 200, 500, 5000} and
we represent also the limit profile.
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(b) Graph of the “large” solution u`(x)
of the Neumann boundary value prob-
lem associated with (Eλ,µ), where c =
1, a(x) and g(u) are as in Figure 1
with P = π (and so m = 1). We
take λ = 12 and µ ∈ {12, 30, 100, 500,
2000, 104, 105, 106, 108} and we repre-
sent also the limit profile.

Figure 2. Asymptotic analysis for the indefinite Neumann boundary
value problem associated with (Eλ,µ) with respect to the parameters
λ and µ.

References
[1] S. Alama, G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, J.

Funct. Anal. 141 (1996) 159–215.

[2] H. Amann, J. López-Gómez, A priori bounds and multiple solutions for superlinear
indefinite elliptic problems, J. Differential Equations 146 (1998) 336–374.

[3] C. Bandle, M. A. Pozio, A. Tesei, Existence and uniqueness of solutions of nonlinear
Neumann problems, Math. Z. 199 (1988) 257–278.

[4] H. Berestycki, I. Capuzzo-Dolcetta, L. Nirenberg, Superlinear indefinite elliptic
problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal. 4
(1994) 59–78.

[5] D. Bonheure, J. M. Gomes, P. Habets, Multiple positive solutions of superlinear
elliptic problems with sign-changing weight, J. Differential Equations 214 (2005)
36–64.

[6] A. Boscaggin, A note on a superlinear indefinite Neumann problem with multiple
positive solutions, J. Math. Anal. Appl. 377 (2011) 259–268.

[7] A. Boscaggin, W. Dambrosio, D. Papini, Multiple positive solutions to elliptic
boundary blow-up problems, J. Differential Equations 262 (2017) 5990–6017.

[8] A. Boscaggin, G. Feltrin, Positive periodic solutions to an indefinite Minkowski-
curvature equation, arXiv:1805.06659.

[9] A. Boscaggin, G. Feltrin, Positive subharmonic solutions to nonlinear ODEs with
indefinite weight, Commun. Contemp. Math. 20 (2018) 1750021, 26 pp.



32 A. Boscaggin, G. Feltrin and E. Sovrano

[10] A. Boscaggin, G. Feltrin, F. Zanolin, Pairs of positive periodic solutions of nonlinear
ODEs with indefinite weight: a topological degree approach for the super-sublinear
case, Proc. Roy. Soc. Edinburgh Sect. A 146 (2016) 449–474.

[11] A. Boscaggin, G. Feltrin, F. Zanolin, Positive solutions for super-sublinear indefinite
problems: high multiplicity results via coincidence degree, Trans. Amer. Math. Soc.
370 (2018) 791–845.

[12] K. J. Brown, P. Hess, Stability and uniqueness of positive solutions for a semi-linear
elliptic boundary value problem, Differential Integral Equations 3 (1990) 201–207.

[13] G. J. Butler, Rapid oscillation, nonextendability, and the existence of periodic
solutions to second order nonlinear ordinary differential equations, J. Differential
Equations 22 (1976) 467–477.

[14] E. N. Dancer, The effect of domain shape on the number of positive solutions of
certain nonlinear equations, J. Differential Equations 74 (1988) 120–156.

[15] E. N. Dancer, The effect of domain shape on the number of positive solutions of
certain nonlinear equations. II, J. Differential Equations 87 (1990) 316–339.

[16] T. Dondè, F. Zanolin, Multiple periodic solutions for one-sided sublinear systems:
A refinement of the Poincaré-Birkhoff approach, arXiv:1901.09406.

[17] G. Feltrin, Positive Solutions to Indefinite Problems: A Topological Approach,
Frontiers in Mathematics, Birkhäuser/Springer, Cham, Switzerland, 2018.

[18] G. Feltrin, Positive subharmonic solutions to superlinear ODEs with indefinite
weight, Discrete Contin. Dyn. Syst. Ser. S 11 (2018) 257–277.

[19] G. Feltrin, E. Sovrano, An indefinite nonlinear problem in population dynamics:
high multiplicity of positive solutions, Nonlinearity 31 (2018) 4137–4161.

[20] G. Feltrin, E. Sovrano, Three positive solutions to an indefinite Neumann problem:
a shooting method, Nonlinear Anal. 166 (2018) 87–101.

[21] G. Feltrin, F. Zanolin, Multiple positive solutions for a superlinear problem: a
topological approach, J. Differential Equations 259 (2015) 925–963.

[22] G. Feltrin, F. Zanolin, Multiplicity of positive periodic solutions in the superlinear
indefinite case via coincidence degree, J. Differential Equations 262 (2017) 4255–
4291.

[23] R. E. Gaines, J. Mawhin, Coincidence degree, and nonlinear differential equations,
vol. 568 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1977.

[24] M. Gaudenzi, P. Habets, F. Zanolin, An example of a superlinear problem with
multiple positive solutions, Atti Sem. Mat. Fis. Univ. Modena 51 (2003) 259–272.

[25] M. Gaudenzi, P. Habets, F. Zanolin, A seven-positive-solutions theorem for a su-
perlinear problem, Adv. Nonlinear Stud. 4 (2004) 149–164.

[26] R. Gómez-Reñasco, J. López-Gómez, The effect of varying coefficients on the dy-
namics of a class of superlinear indefinite reaction-diffusion equations, J. Differential
Equations 167 (2000) 36–72.

[27] R. Hakl, M. Zamora, Periodic solutions to second-order indefinite singular equa-
tions, J. Differential Equations 263 (2017) 451–469.

[28] J. B. Haldane, The theory of a cline, J. Genet 48 (1948) 277–284.
[29] J. K. Hale, Ordinary differential equations, 2nd ed., Robert E. Krieger Publishing

Co., Inc., Huntington, N.Y., 1980.
[30] D. Henry, Geometric theory of semilinear parabolic equations, vol. 840 of Lecture

Notes in Mathematics, Springer-Verlag, Berlin-New York, 1981.



High multiplicity and chaos for an indefinite problem 33

[31] P. Hess, T. Kato, On some linear and nonlinear eigenvalue problems with an indef-
inite weight function, Comm. Partial Differential Equations 5 (1980) 999–1030.

[32] J. López-Gómez, M. Molina-Meyer, A. Tellini, The uniqueness of the linearly stable
positive solution for a class of superlinear indefinite problems with nonhomogeneous
boundary conditions, J. Differential Equations 255 (2013) 503–523.

[33] J. López-Gómez, P. Omari, S. Rivetti, Positive solutions of a one-dimensional in-
definite capillarity-type problem: a variational approach, J. Differential Equations
262 (2017) 2335–2392.

[34] Y. Lou, T. Nagylaki, A semilinear parabolic system for migration and selection in
population genetics, J. Differential Equations 181 (2002) 388–418.

[35] Y. Lou, T. Nagylaki, W.-M. Ni, An introduction to migration-selection PDE mod-
els, Discrete Contin. Dyn. Syst. 33 (2013) 4349–4373.

[36] Y. Lou, W.-M. Ni, L. Su, An indefinite nonlinear diffusion problem in population
genetics. II. Stability and multiplicity, Discrete Contin. Dyn. Syst. 27 (2010) 643–
655.

[37] J. Mawhin, Topological degree methods in nonlinear boundary value problems,
vol. 40 of CBMS Regional Conference Series in Mathematics, American Mathe-
matical Society, Providence, R.I., 1979.

[38] J. Mawhin, Topological degree and boundary value problems for nonlinear differ-
ential equations, in: Topological methods for ordinary differential equations (Mon-
tecatini Terme, 1991), vol. 1537 of Lecture Notes in Mathematics, Springer, Berlin,
1993, pp. 74–142.

[39] T. Nagylaki, Conditions for the existence of clines, Genetics 3 (1975) 595–615.

[40] T. Nagylaki, The diffusion model for migration and selection, in: Some mathemati-
cal questions in biology—models in population biology (Chicago, IL, 1987), vol. 20
of Lectures Math. Life Sci., Amer. Math. Soc., Providence, RI, 1989, pp. 55–75.

[41] K. Nakashima, W.-M. Ni, L. Su, An indefinite nonlinear diffusion problem in pop-
ulation genetics. I. Existence and limiting profiles, Discrete Contin. Dyn. Syst. 27
(2010) 617–641.

[42] R. Ortega, Stability of periodic solutions of Hamiltonian systems with low dimen-
sion, Rend. Semin. Mat. Univ. Politec. Torino 75 (2017) 53–78.

[43] P. H. Rabinowitz, Pairs of positive solutions of nonlinear elliptic partial differential
equations, Indiana Univ. Math. J. 23 (1973/74) 173–186.

[44] E. Sovrano, A negative answer to a conjecture arising in the study of selection-
migration models in population genetics, J. Math. Biol. 76 (2018) 1655–1672.

[45] E. Sovrano, F. Zanolin, Indefinite weight nonlinear problems with Neumann bound-
ary conditions, J. Math. Anal. Appl. 452 (2017) 126–147.

[46] A. Tellini, High multiplicity of positive solutions for superlinear indefinite problems
with homogeneous Neumann boundary conditions, J. Math. Anal. Appl. 467 (2018)
673–698.

[47] A. J. Ureña, A counterexample for singular equations with indefinite weight, Adv.
Nonlinear Stud. 17 (2017) 497–516.



34 A. Boscaggin, G. Feltrin and E. Sovrano

Alberto Boscaggin
Department of Mathematics “Giuseppe Peano”, University of Torino
Via Carlo Alberto 10, 10123 Torino, Italy
e-mail: alberto.boscaggin@unito.it

Guglielmo Feltrin
Department of Mathematics, Computer Science and Physics, University of Udine
Via delle Scienze 206, 33100 Udine, Italy
e-mail: guglielmo.feltrin@uniud.it

Elisa Sovrano
Istituto Nazionale di Alta Matematica “Francesco Severi” c/o Department of Mathe-
matics and Geosciences, University of Trieste
Via Valerio 12/1, 34127 Trieste, Italy
e-mail: esovrano@units.it


	1. Introduction and statement of the results
	2. Abstract degree setting and technical lemmas
	2.1. Coincidence degree framework
	2.2. Finding the constant *
	2.3. Some estimates for small solutions
	2.4. Some estimates for large solutions

	3. Existence of two solutions
	4. High multiplicity of solutions
	4.1. Finding the constant *(,r,R)
	Checking the assumptions of Lemma 2.1.
	Checking the assumptions of Lemma 2.2.


	5. Globally defined solutions and symbolic dynamics
	6. Related results and remarks
	6.1. Subharmonic solutions
	6.2. Dirichlet and Neumann boundary conditions
	6.3. Stability issues
	6.4. Asymptotic analysis

	References

